
Memory-Safe Elimination of Side Channels
Luigi Soares

Department of Computer Science
UFMG, Brazil

luigi.domenico@dcc.ufmg.br

Fernando Magno Quintão Pereira
Department of Computer Science

UFMG, Brazil
fernando@dcc.ufmg.br

Abstract—A program is said to be isochronous if its running
time does not depend on classified information. The program-
ming languages literature contains much work that transforms
programs to ensure isochronicity. The current state-of-the-art
approach is a code transformation technique due to Wu et al.,
published in 2018. That technique has an important virtue: it
ensures that the transformed program runs exactly the same set
of operations, regardless of inputs. However, in this paper we
demonstrate that it has also a shortcoming: it might add out-
of-bounds memory accesses into programs that were originally
memory sound. From this observation, we show how to deliver the
same runtime guarantees that Wu et al. provide, in a memory-safe
way. In addition to being safer, our LLVM-based implementation
is more efficient than its original inspiration, achieving shorter
repairing times, and producing code that is smaller and faster.

Index Terms—Side Channel, Information Leak, Program
Transformation

I. INTRODUCTION

A program is said to be isochronous if it always executes
the same operations and accesses the same memory addresses,
regardless of the input that it receives. Time invariance is
a desirable property in cryptographic libraries, because its
absence might be the source of side channels in these im-
plementations [1]–[5]. Therefore, there exists much research
aiming at proving that a program is time invariant (or time
variant) [6]–[10], and at transforming a program to mitigate
timing-based leakages [11]–[17]. Results in this area have
been fundamental to uncover side channels in widely used
cryptographic routines [18]–[20], and have led to the release
of tools that found industrial applications in this field.

The current state-of-the-art code transformation to make a
program isochronous is due to Wu et al. [21]. This technique
has been materialized into a tool, SC-Eliminator, which,
once applied onto a program P , produces a new program
P ′ that is semantically equivalent to P , with two additional
properties. P ′ executes the same instructions and accesses
the same cache lines, regardless of its input. Wu et al. have
shown that their technique is effective in eliminating side
channels, both in theory and in practice, via simulations using
gem5 [22].
The Issue of Memory Safety. Nevertheless, Wu et al.’s
approach suffers from one shortcoming, which can be repro-
duced in their publicly available artifact: the transformation
might insert out-of-bounds memory accesses into code that
was originally memory safe. Indeed, as we demonstrate in
Section II-B via an example, it is not possible—in general—for

a transformation to ensure both that a program is time invariant
and is memory safe. The gist of the problem lays on the fact
that the elimination of time invariance may force the execution
of statements that were originally guarded against invalid
memory accesses. Such is typically the case in algorithms that
receive input arrays of unknown sizes.
A Compromise. The contribution of this paper is a suite
of static code transformation techniques that transform pro-
grams to ensure their time invariance. Given the impossibility
mentioned in Section II-B, we settle for a compromise. In
Section II-C, we identify a class of programs that can be safely
transformed, so that no invalid memory access is possible in
the resulting code. This family of programs is rather small.
Thus, to make isochronification more useful, Section III-C
proposes a compromising solution. In addition to modifying
the body of a function f , we also modify its interface; thus,
producing a new function fs. Said modification establishes
a contract with fs’s caller by associating a symbolic bound
with each input array. This contract provides the following
guarantees regardless of the inputs that fs receives:

1) fs executes always the same instructions, meaning that
it fetches always the same addresses in the instruction
memory;

2) within the newly created symbolic bounds, fs accesses
always the same data, meaning that it fetches always the
same addresses in the data memory;

3) outside the symbolic bounds, fs is still memory safe (as
long as f is memory safe); however, property (2) is no
longer ensured.

We emphasize that the combination of properties (1) and
(2) provide stronger guarantees than previous work. To this
effect, we recognize a second limitation, not only in Wu et
al.’s method, but in other approaches that try to eliminate
side channels due to misses in the data cache, such as
Brotzman et al.’s [23] recent contribution. These techniques
are based on pre-loading values, to keep sensitive information
directly accessible in the last-level data cache. Pre-loading is
architecture dependent, for the approach is customized to the
dimensions of the data cache. Our property (2) is stronger:
we affirm that, once a transformation is possible, the resulting
program will always access the same addresses in the data
cache, independent on its sensitive inputs.
Summary of Results. A formalization of the techniques
discussed in this paper have been prototyped in Haskell. A

practical version of this prototype has been implemented in
LLVM. Section IV presents an evaluation of this tool in
24 cryptographic routines taken from CTBench [24] and
Wu et al.’s ACM artifact [25]. Experiments in Section IV-A
indicate that the transformations discussed in this paper run
in time linear on the number of instructions in the target
program. Section IV-B shows that the transformed code is 55%
slower, on average, than the original program. Additionally,
Section IV-C shows that the transformed programs are, on
average, 154% larger than their original versions. In contrast,
Wu et al.’s artifact works only for 20 of the 24 benchmarks,
and leads to code that is 127% slower and 331% larger.

II. OVERVIEW

This section introduces two properties that are desirable in
implementations of cryptography: operation invariance and
data invariance. The first property refers to the instruction
cache; the second, to the data cache. The instruction cache
stores the instructions, i.e., operations, that constitute the
binary encoding of a program. The data cache stores the
data that said instructions manipulate in the course of their
execution. We state these two properties as follows:

Property 1 (Operation Invariance). A program is said to be
operation invariant if it reads the same sequence of addresses
in the instruction cache, regardless of its inputs.

Property 2 (Data Invariance). A program is said to be
data invariant if it reads and/or writes the same sequence of
addresses in the data cache, regardless of its inputs.

Example 1. Function oFdF, in Figure 1, is not operation
invariant, nor data invariant. The conditional at Line 3 depends
on the contents of arrays a and b; hence, operations might
vary. This conditional guards a return statement, which may
prevent the program from accessing further indices of a and
b in the data cache. Function oFdT is not operation invariant,
as the conditional at Line 13 is commanded by the contents
of input arrays. However, regardless of said inputs, the same
elements of a and b are always accessed. Function oTdF
shows the opposite behavior: positions accessed in the data
cache depend on input array t. Yet, regardless of any of
its three inputs, the same operations always execute in this
routine. Finally, function oTdT is both operation and data
invariant. Notice that the outcome of operations, like the
selector at Line 32, might vary without compromising neither
Property 1 nor Property 2. Indeed, a program that would
always produce the same outputs, independent on its inputs,
would not be of much service.

A. Properties of Program Repair

Wu et al. [21] define as program repair a code transforma-
tion procedure that changes a program P , thus producing a
new program P ′ that is time invariant. Their transformation
ensures Property 1 (operation invariance). However, they do

int	oFdF(int	*a,	int	*b)	{
		for	(int	i	=	0;	i	<	2;	i++)	{
				if	(a[i]	!=	b[i])	{
						return	0;
				}
		}
		return	1;
}

int	oFdT(int	*a,	int	*b)	{
		int	r	=	1;
		for	(int	i	=	0;	i	<	2;	i++)	{
				if	(a[i]	!=	b[i])	{
						r	=	0;
				}
		}
		return	r;
}

int	oTdF(int	*a,	int	*b,	int	*t)	{
		r0	=	t[a[0]]	!=	t[b[0]];
		r1	=	t[b[1]]	!=	t[b[1]];
		r2	=	r0	|	r1;
		r3	=	r2	?	0	:	1;
		return	r3;
}

int	oTdT(int	*a,	int	*b)	{
		r0	=	a[0]	!=	b[0];
		r1	=	a[1]	!=	b[1];
		r2	=	r0	|	r1;
		r3	=	r2	?	0	:	1;
		return	r3;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

!O & !D

!O & D

O & !D

O & D

Fig. 1. Procedures oFdF, oFdT, and oTdT compare a password with
a secret key. Procedure oTdF runs a similar algorithm, albeit the indices
to be compared are provided as inputs. Each program presents a different
combination of operation and data invariance.

not guarantee Property 2 (data invariance)1. Program repair,
as proposed by Wu et al., is memory unsafe: the transformed
version might access unallocated memory, even if such bad
accesses do not occur in the original code for the same inputs.
In this paper, we are interested in transformations that are safe.
To this end, we introduce a property that characterizes them:

Property 3 (Memory-Safe Program Repair). Let T be a
transformation that implements program repair. If P is a
program, then T (P) = P ′ is the repaired version. T is memory
safe if it does not introduce out-of-bounds memory accesses
in P ′ that do not occur in P .

Property 3 is a relation between a transformation T and a
program P , valid for any input that P receives. In other words,
for any input I , Property 3 holds if: (i) P (I) = P ′(I); and
(ii) if every memory access performed during the execution of
P (I) is valid, then the same is true for P ′(I). Notice that item
(ii) does not force these memory accesses to be the same.

1Wu et al. discuss alternatives to prefetch cache lines, so to ensure that hits
and misses in the data cache remain independent on program inputs.

B. Time invariance vs Memory Soundness

Data invariance (Property 2) and safe program repair are, in
general, two irreconcilable properties. It is possible to conceive
a program P such that, for any transformation T , where P ′ =
T (P), these three statements cannot be all true: (i) P and
P ′ produce the same outputs, given the same inputs; (ii) P ′

is data invariant; and (iii) the transformation is memory safe.
The next example illustrates this impossibility.

Example 2. Consider function oFdF, in Figure 1. This
function implements the following relations: a[0] 6= b[0] ⇒
0 ∧ (a[0] = b[0] ∧ a[1] 6= b[1]) ⇒ 0 ∧ (a[0] = b[0] ∧ a[1] =
b[1])⇒ 1. If this program receives two arrays of size one, such
that a[0] 6= b[0], then it returns immediately with answer 0.
This input implies that any access to a[1] or b[1] would be
invalid. However, there are inputs that force the access of these
two memory cells. Thus, data invariance cannot characterize
any semantically equivalent version of oFdF.

Some explanations concerning Example 2 are in order.
The C programming language is inherently memory unsafe:
array indexing, for instance, is not guarded against out-of-
bounds accesses. Therefore, the baseline program used in
Example 2 might incur in invalid memory accesses: it suffices
to feed function oFdF, in Figure 1, with two null pointers,
for instance. Such bad inputs are of no concern to Property 3.
In the context of Example 2, safe program repair refers
exclusively to inputs that only cause valid memory accesses in
function oFdF. The next example further clarifies the notion
of memory-safe program repair.

Example 3. The transformation proposed by Wu et al. [21]
transforms function oFdF (Fig. 1) into code that is similar to
function oTdT (in the same figure). The latter is both data
and operation invariant. However, as seen in Example 2, this
transformation is not memory safe, considering the inputs a =
{0} and b = {1}. In this case, function oTdT runs into invalid
memory accesses at a[1] and b[1].

C. Guarantees

The impossibility result discussed in Section II-B indicates
that the deployment of effective program repair techniques
asks for compromises. To explain the compromises that this
paper adopts, we shall need to define two notions: data
consistency and contracts. We define the former below, and
explain the latter in Section II-D:

Definition 1 (Data Consistency). A program is data consistent
if it reads and/or writes the same set of addresses in the data
cache, regardless of its inputs.

Data consistency is a form of weak data invariance. Whereas
the latter forces the order of memory accesses to be always
the same, the former imposes no constraints on this ordering.
Data consistency gives us the necessary precondition to state
our first covenant:

int	new_oFdF(int	*a,	int	*b,	uint	Na,	uint	Nb)	{
				bool	r	=	a[0]	==	b[0];
				for	(uint	i	=	1;	i	<	min(2,	min(Na,	Nb));	i++)	{
								r	&=	a[i]	==	b[i];
				}
				if	(!r)	{
						return	0;
				}
				for	(int	j	=	min(Na,	Nb);	j	<	2;	j++)	{
								if	(a[j]	!=	b[j])	{
												return	0;
								}
				}
				return	1;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Fig. 2. Version of Function oFdF (Fig. 1) with extra parameters inserted to
implement the memory contract.

Covenant 1. Let P be a data-consistent program and T
the transformation discussed in this paper. The following
guarantees hold:

1) T is memory safe;
2) T (P) is operation invariant;
3) T (P) is data invariant.

If P is not data consistent, then items (1) and (2) hold, but
(3) does not.

D. Compromises
The techniques to be discussed in Section III meet the

guarantees stated in the Covenant 1. Thus, full isochronicity is
only established for data-consistent programs. To extend such
guarantees to other programs, we shall adopt a compromise.
To explain this compromise, we shall rely on the notion of a
memory contract—a concept that we define as follows:

Definition 2 (Memory Contract). Let f(. . . , a, n, . . .) be a
function with at least two arguments, such that a is an array,
and n is an integer. The memory contract formed by the triple
(f, a, n) is a precondition stating that whenever f is invoked,
the array a contains at least n valid cells.

As we explain in Section III-C, we modify the signature of
data-inconsistent functions with new contracts. These mod-
ifications make the functions data consistent whenever the
preconditions of the contracts are met. To create memory
contracts, as we shall explain in Section III, we augment the
interface of a function, adding an integer to it, for each pointer
that it contains. The next example shows the new interface that
is created to function oFdF, earlier seen in Figure 1.

Example 4. Figure 2 shows a version of Function oFdF,
transformed to incorporate a memory contract. The trans-
formed function, new_oFdF, splits the code of its original
version into two parts. The first part, from Line 3 to Line
8, is data consistent, as long as Na ≥ 2 and Nb ≥ 2. The
second part, from Line 9 to Line 13, is not, due to the return
statement at Line 11.

Notice that modifications such as those seen in Example 4,
apply to a function, but not to the calling site where said

// Original program
int foo(int* a, int c, int i) {
 if (c) return a[i];
 return -1;
}

Integer variable that
represents the size of
pointer a (Sec. 3.3)

Shadow variable that
replaces accesses to
pointers whose size
is not guaranteed to
be within bounds
(Sec. 3.1)

Ctsel instructions
created to ensure
operation invariance
(Sec. 3.3)

Unified return point
(Sec. 3.1)

// Transformed program
int foo(int* a, int n, int c, int i) {
 int dummy;
 int *sh = &dummy;
 int offs = (c | i < n) ? i : 0;
 int base = (c | i < n) ? a : sh;
 v = base[offs];
 int r = c ? v : -1;
 return r;
}

Fig. 3. Interventions carried out by the code transformation technique
discussed in this paper.

function is invoked. As we describe in Section III-C2, we
apply the static analysis of Paisante et al. [26] to determine
the size of arrays. Then, we use the expressions obtained to
modify that calling site. Nevertheless, state-of-the-art static
analysis techniques are not, as of today, able to find symbolic
bounds to every array used in a program [27]. In such cases,
we assume that the length is zero, implying that data invariance
is not ensured—although operation invariance and memory
safety are always delivered.

III. PROGRAM REPAIR

This section presents the code transformation technique
that we propose in this paper to bestow onto functions the
properties discussed in Section II. To ease our presentation,
Section III-A introduces a toy language that contains a min-
imum set of instructions necessary to describe our approach.
Section III-B defines a suite of transformation rules that
actuate on this language to produce an isochronous program.
Achieving isochronicity is not always possible, as previously
discussed. Thus, Section III-C explains the contract-based
approach that we advocate to reach a compromise in face of
such general impossibility. Finally, Section III-D shows how
to extend our ideas to work on an interprocedural setting. We
shall be using the program in Figure 3 to illustrate the many
steps necessary to “isochronify” a program.

A. The Baseline Language

Figure 4 shows the syntax of the toy language that will
be used to explain our ideas. This language contains a small,
albeit Turing Complete, set of three-address code instructions
which can be used to implement cryptographic routines. In
Figure 4, {} denotes zero or more occurrences, [] indicates
optional terms, id represents names of variables, n stands for
numerals, and ` ranges over basic block labels.
Preprocessing. Henceforth, we shall assume that programs
written in our toy language have four particularities. First,
these programs are represented in Static Single Assignment
form [28]; hence, phi-functions are part of the syntax that we
adopt. Second, they contain a single return point. Third, they

Program ::= { BasicBlock }
BasicBlock ::= [`:] { Instruction } Terminator
Instruction ::= alloc (id, Expr)

| mov (id, Expr)
| load (id, id, Value)
| store (Value, id, Value)
| phi (id, Value : ` { , Value : ` })
| ctsel (id, Value, Value, Value)

Terminator ::= jmp (`)
| br (Value, `, `)
| ret (Expr)

Expr ::= Value | Unop Value | Value Binop Value
Value ::= n | id

Unop ::= – | ! | ∼
Binop ::= + | – | * | & | ”|” | = | < | ...

Fig. 4. Syntax of a baseline language used to implement cryptographic
functions.

contain a dummy variable, called shadow (sh in the exam-
ples). The shadow variable will be used as a placeholder to
memory locations of unknown size. Finally, the programs must
be cycle-free. Loops, when available, must be unrolled; thus,
their maximum number of iterations must be known at com-
pilation time. Otherwise, the problem of “isochronification”
would not be even well-defined [21]2. These particularities
can be ensured through a preprocessing phase.

B. Core Transformations

1) Constant-Time Selectors: Following Wu et al.’s nota-
tion [21], this paper also uses a special instruction ctsel
(constant-time selector), which is architecture dependent. The
operation ctsel(x, c, vt, vf) assigns vt to x, if c is true;
otherwise, it assigns vf to x. Mainstream computer architec-
tures, such as ARM, provide direct implementations of this
instruction. In x86, it can be implemented as a combination
of selection and data movement.

Example 5 (Ctsel). In our baseline language, ctsel(x,
c, vt, vf) can be implemented as {mov(cf , c−1), mov(ct,∼cf),
mov(xt, ct & vt), mov(xf , cf & vf), mov(x, xt | xf)}.

Gathering Conditions. A constant-time selector such as
ctsel(x, c, vt, vf) is parameterized by a condition c. This
value controls the assignment to x, i.e., the variable that the
ctsel defines. Therefore, to build these selectors, we need to
map basic blocks to the predicates that control them. To this
end, we define the concept of a path condition as follows:

2We emphasize that we can still deal with programs containing unbounded
loops, as long as these loops are not controlled by sensitive data.

load(v0, a, 0)
load(v1, b, 0)
mov(p0, v0 != v1)
br(p0, l3, l1)

load(v2, a, 1)
load(v3, b, 1)
mov(p1, v2 != v3)
br(p1, l3, l2)

int oFdF_u(int* a, int* b) {
 if (a[0] != b[0]) {
 return 0;
 } else {
 if (a[1] != b[1]) {
 return 0;
 }
 }
 return 1;
}

l0:

jmp(l3)

l1:

l2: l3: phi(r, 1: l2, 0: l1, 0: l0)
ret(r)

p0

!p0

!p0 & !p1

!p0 & p1

!p0 & !p1

Fig. 5. Path conditions associated with each basic block in the program.

[Incoming]

In[`] = { inc(`, terminator(`p)) : `p ∈ predecessors(`) }
where inc(`, br(p, `,)) = Out[`] & p

inc(`, br(p, , `)) = Out[`] & !p

inc(`,) = Out[`]

[Outgoing]

Out[`] = c0 | ... | cn, ci ∈ In[`]

Fig. 6. Data-flow analysis that finds the path conditions that control the
execution of basic blocks in a control flow graph.

Definition 3 (Path Condition). A path condition c0→n is a
predicate like pi & ... & pk, 0 ≤ i ≤ k ≤ n, that, once true,
forces the execution of the basic block labeled by `n. Each pi
is the predicate that controls one of the branches that exists in
the path from the beginning of the program until `n.

Example 6. Figure 5 shows the function oFdF, with its loop
unrolled. The instruction jmp(`3) at `2 runs when p0 and p1
are false. Thus, the expression !p0 & !p1 is a path condition
controlling the execution of that operation.

The data-flow analysis in Figure 6 collects the conditions
that control each basic block in a program. This analysis
classifies path conditions into incoming or outgoing. For
simplicity, in the remaining of this paper we may omit the
word path when referring to them. A basic block has a variable
number of incoming conditions: one for each predecessor. In
contrast, it has only one outgoing condition, which is the
conjunction of all its incoming conditions. The block is in
the execution path whenever the outgoing condition is true.

The uniqueness of an outgoing condition is crucial for an
efficient implementation of the said data-flow analysis. First,
we produce a map from labels to newly created variables
that shall store the outgoing condition of each block. Abusing

the notation in Figure 6, we name this map as Out. Since
outgoing conditions are unique, Out will never be modified
post construction. Hence, once In[`] is computed, it will also
never change. Therefore, a pre-order traversal of the control
flow graph suffices to gather all the incoming and outgoing
conditions that arise from a well-formed SSA-form program.
We say that an SSA-form program is well-formed if the
definition of a variable dominates all its uses. Moreover, the
data-flow analysis is guaranteed to terminate, and it runs in
linear time on the number of basic blocks.

Example 7. Figure 5 shows the incoming conditions asso-
ciated with each basic block of oFdF, as computed by the
analysis in Figure 6.

2) Transformation Rules: Figure 7 defines the rewriting
rules that we use to implement program repair. These trans-
formations are modeled by the following relations:

(i, `)
i−→ (I, V) (1)

(t, `)
f−→ t′ (2)

Relation (1) maps i ∈ Instruction at label ` to a new set
of operations I , plus a set V of fresh variable names. Names
in V are defined by instructions in I . The rules phi1, phi2
and phin in Figure 7 deal with phi-functions having 1, 2 or
n (n > 2) arguments, respectively. Rule phi1 converts a phi-
node into a mov operation, while the rules phi2 and phin use
a map of incoming conditions (In) to transform phi-nodes into
ctsel instructions. We use the notation In[` 7→ {c1, . . . , ck}]
to indicate that the entry associated with ` in table In has been
updated to {c1, . . . , ck}. The store and load rules require the
map of outgoing conditions (Out), which indicates whether
control flows to ` or not.

These two rules use a map L between arrays and their sizes.
This map is necessary to guarantee data invariance (when
possible) and is the subject of Section III-C. These rules also
use a shadow memory region sh to ensure memory safety.
Notice that the use of sh by the load rule is explicit. The
address of the shadow memory might flow into the variable
z3, which denotes the position dereferenced by the load. On
the other hand, the store rule uses sh indirectly through the
variable z3. From that, three possible cases can be derived:

• The store instruction should not be executed (i.e., the
path condition is false) and the index used is not within
safe bounds. In this case, a load from sh is followed by
a store of the loaded value to sh. Thus, the operation
takes no effect.

• The store instruction should not be executed (i.e., the
path condition is false), but the index used lays inside
safe bounds. Unlike the first situation, the auxiliary load

instruction will access the original address and get the
current value stored there. Then, the store will use this
value to update the original address. Again, the operation
takes not effect.

[phi1] (phi(x, v0: `0),)
i−→ ({mov(x, v0)}, ∅)

[phi2]
In[`] = {c0, c1}

In ` (phi(x, v0: `0, v1: `1), `)
i−→ ({ctsel(x, c0, v0, v1)}, ∅)

[phin]

In[`] = {c0, c1, ..., ck}, In[` 7→ {c1, ..., ck}] = In′,

In′ ` (phi(z, v1: `1,..., vk: `k), `)
i−→ (I, V),

I ∪ {ctsel(x,c0, v0, z)} = I′

In ` (phi(x, v0: `0, v1: `1, ..., vk: `k), `)
i−→ (I′, V ∪ { z })

[load]

Out[`] = c, L[m] = n,

{mov(z0, idx < n), mov(z1, c | z0), ctsel(z2, z1, idx, 0)
ctsel(z3, z1,m, sh),load(x, z3, z2)} = I

Out,L ` (load(x,m, idx), `)
i−→ (I, {z0, ..., z3})

[store]

Out,L ` (load(z4,m, idx), `)
i−→ (I, {z0, ..., z3}),

Out[`] = c, {ctsel(z5, c, v, z4), store(z5, z3, z2)} = I′

Out,L ` (store(v,m, idx), `)
i−→ (I ∪ I′, {z0, ..., z5})

[br] (br(p, `t, `f , `
′)

f−→ jmp(`′)

Fig. 7. Some transformation rules used in program repair. The superscripts
i and f are defined by Relations (1) and (2) in Page 5.

br(c, l2, l1)

phi(r, -1:l0, x:l2)
ret(r)

l0:

l1:

!c
load(x, a, i)
jmp(l1)

l2:

c

dummy variable alloc(sh, 1)
mov(z0, i < N)
mov(z1, c | z0)
ctsel(z2, z1, i, 0)
ctsel(z3, z1, a, sh)
load(x, z3, z2)
mov(z4, !c)
ctsel(r, z4, -1, x)
ret(r)

Fig. 8. The program on the left is the low-level representation of function
foo seen in Figure 3. The program on the right is the isochronous version
of that code, produced by the rewriting rules seen in Figure 7.

• The store instruction should be executed (i.e., the path
condition is true). In this case, the original operation
is performed without any modifications, updating the
memory address with the new value.

Relation (2) maps t ∈ Terminator to another t′ ∈
Terminator. The rule br replaces a conditional by an uncon-
ditional statement. In this case, `′ labels the basic block that
succeeds the one that contains the br operation, in topological
order. Figure 8 illustrates the effects of the said rules.

Theorem 1 (Correctness). The transformations in Figure 7
preserve semantics.

Theorem 2 (Operation Invariance). The transformations in
Figure 7 yield an operation-invariant program.

Theorem 3 (Data Invariance). The transformations in Figure 7
ensure data invariance when applied onto a data-consistent
program.

Corollary 1 (Isochronicity). Let P be a data-consistent pro-
gram. The transformations in Figure 7 produce an isochronous
version of P .

C. Binding Contracts

As we have discussed in Section II, the transformation
proposed in this paper establishes memory contracts (Defi-
nition 2) between functions and their callers. If the contract’s
preconditions are met, then the transformed code is operation
and data invariant, and the transformation is memory safe.
Otherwise, data invariance is not guaranteed. The creation of
a contract involves three actions: change of interface, modifi-
cation of calling sites, and insertion of a shadow memory into
the transformed function.

1) Change of interface: The creation of a contract implies
a change in the function signature. We augment the function’s
interface with an integer for each pointer that it receives.
Thus, given a function f(. . . , T ∗ a, . . .), we produce a new
function f ′(. . . , T ∗a, int n, . . .). Following the condition
stated in Definition 2, the contract expects the following
relation: whenever f ′ is invoked, the size of the array a of
type T is at least n.

2) Modification of calling sites: When applied onto whole
programs, our transformation changes calling sites where mod-
ified functions are invoked. This modification involves adding
expressions denoting the size of arrays as extra arguments of
function calls. We use the static analysis of Paisante et al. [26]
to infer the length of arrays. Paisante et al. have proposed
a forward-must analysis that binds pointers to symbolic ex-
pressions denoting their sizes. To obtain an inter-procedural
analysis (thus extending the intra-procedural work of Paisante
et al.), we rely on the knowledge that the function argument
following each pointer represents that pointer’s maximum
offset. We use this observation to propagate information across
functions.
Imprecisions. This analysis only works for top-level pointers
(pointers with a representation in the SSA-form program).
Thus, we are not able to track the size of pointers to point-
ers. In this case, we assume that sizes are zero. Therefore,
whenever we cannot find a symbolic estimate of the size of a
pointer at a given calling site, we set its contract to zero. When
this event happens, we still deliver operation invariance and
memory safety. However, we cannot ensure data invariance,
because different inputs might cause variations in the number
of times that the shadow memory is accessed.

3) Shadow Memory: The shadow variable works as a
placeholder for memory locations whose access cannot be
guaranteed to be within bounds by the contract. There exists
one shadow variable per function. Its size equals the size of the
largest addressable word in the architecture. Figure 9 shows
the rewriting procedure that adds the contract as a precondition
to memory accesses. Let p be the original path condition that

The shadow variable is
used as a replacement
to original access.

// Transformed
if(p | i < N) {
 a[i];
} else {
 *sh;
};

Condition imposed by
the binding contract.

// Original
if(p) {
 a[i];
}

Fig. 9. Rewriting procedure that replaces potentially unsafe memory accesses
with accesses to the shadow variable.

Change at
calling site

Change of
interface

// Original function
void f(...) {
 if (p0) {
 ...;
 } else if (p1) {
 ...;
 g();
 ...;
 }
}

void g() {
 ...
}

Addition
of new
conditional

// Transformed function
void f(...) {
 if (p0) {
 ...;
 } else if (p1) {
 ...;
 gp(!p0&p1);
 ...;
 }
}

void gp(int p) {
 if (p) {...}
}

iii

ii

i

Fig. 10. Interprocedural transformations.

guards an access a[i] within function f , and let (f, a, n) be its
contract. The transformation guards this access with a new
condition i < n. The new guard is safe, by Definition 2.
When this condition is not met, some memory access must
still happen—to ensure operation invariance. In this case, the
shadow memory is accessed instead. This expedient ensures
memory safety, i.e., the absence of out-of-bounds accesses, as
Theorem 4 formalizes.

Example 8. Figure 8 shows how the shadow variable is used.
Accesses to it have been highlighted.

Theorem 4 (Memory Safety). Let f be a function. The
transformations in Figure 7 are memory safe, as long as the
preconditions in f ’s contract (Definition 2) are met.

D. Interprocedural Analysis

Cryptographic algorithms might be composed by a com-
bination of functions. When performing the transformations
that we advocate in this paper to eliminate side channels,
inlining them is not an option. The combination of unrolling
plus inlining might result in code that is large enough to render
our techniques impractical, as Example 9 illustrates.

Example 9 (Inlining). The benchmark curve25519-
donnabad.c, distributed with dudect3 contains 7,398 in-
structions, after full unrolling. Once functions are inlined, this
number jumps up to 3,398,816. This expansion represents a
growth of 460x.

Figure 10 shows the rewriting principle that we use to avoid
inlining when carrying out isochronification. Every function

3https://github.com/oreparaz/dudect

that is called (the callee) within transformed code (the caller)
is modified in three ways. First, the signature of the callee is
augmented to receive a condition (Fig. 10-i). Second, the body
of the callee is surrounded by a conditional test, guarded by the
new condition (Fig. 10-i). Third, the caller is modified, so that
the path condition at the invocation point is passed to the callee
(Fig. 10-i). Notice that the conditions are computed as part of
the transformation itself. In other words, the transformation
just described receives, for free, the path conditions as a
byproduct of the analysis discussed in Section III-B1 and
shown in Figure 6.

IV. EVALUATION

This section evaluates the ideas presented in this paper. To
this end, we analyze the following research questions:

• RQ1: What is the time taken to repair programs?
• RQ2: What is the time overhead that our program repair

technique adds onto programs?
• RQ3: What is the size overhead that our program repair

technique adds onto programs?

Software: we have implemented our techniques in LLVM
version 10.0.0. To give the reader some perspective on our
numbers, every experiment also reports results obtained with
the version of SC-Eliminator (Wu et al.’s tool) publicly
available as an ACM artifact.
Hardware: every experiment discussed in this paper has been
performed on an Intel Core i5 with a clock of 2.5 GHz, and 8
GB of RAM (DDR4) operating at 2.133 MT/s. The operating
system used was Manjaro Linux version 20.0.3.
Benchmarks: To answer the research questions, we use a
synthetic benchmark—function oFdF (Fig. 1, pg. 2)—plus ac-
tual cryptographic routines. The latter is formed by CTBench
[24] and a subset of the benchmarks distributed together
with SC-Eliminator [25]. SC-Eliminator does not
terminate successfully when given the three benchmarks from
CTBench. Furthermore, it produces incorrect code when
applied onto both loki91 and oFdF. Thus, when discussing
absolute and average numbers related to running time, we omit
these five benchmarks. Nevertheless, charts seen in this Section
still contain them, as we can handle them correctly.

In this paper, we assume that every input used in the
cryptographic routines is sensitive. Thus, the isochronous
version of each of these routines should be data and op-
eration invariant for every input. It is possible to use
tools like FlowTracker [18] to separate sensitive from
innocuous inputs; however, neither our transformation nor
SC-Eliminator resort to this expedient.
Timing Methodology: When reporting the time to repair
programs, we run each experiment 50 times, while for the
repaired code we run 1,000 times. In both cases, we eliminate
outliers using their z-score with a threshold of three. The
elimination of outliers is necessary, because our benchmarks
run for a very short time (microseconds); hence, small running-
time variations might account for large differences in final

results. Furthermore, we present results obtained from two
versions: non-optimized and optimized via opt -O14.
Validation: We have used cachegrind to certify that all
repaired programs meet the terms stated in Covenant 1.
Valgrind verified that operation invariance and memory
safety holds for all the programs with all the tested inputs.
This verification pass is applied onto the transformed programs
and onto their optimized versions. Data invariance is ensured
for 12 benchmarks. The remaining 12 cannot be made data
invariant: 11 of them are inherently data inconsistent because
they use inputs to index memory5. For the other program, our
static analysis has not been able to find symbolic expressions
for arrays. It is possible to ensure data invariance by providing
these bounds manually.

A. RQ1 – Repairing Time

This section reports the time that our implementation and
SC-Eliminator take to repair programs. Both techniques
are implemented as LLVM passes. We report only the time to
do program repair. The rest of LLVM’s processing time—the
same for both implementations—is not considered.

a) Cryptographic routines: Figure 11 plots the time
that our implementation and SC-Eliminator take to repair
actual cryptographic routines. Considering only the 21 bench-
marks in which SC-Eliminator works, our transformation
required 7.159 seconds to be applied (sum of all the times
observed for all the benchmarks), while SC-Eliminator
took 56.366. Thus, the approach introduced in this paper is
7.873x faster. On average (arithmetic mean), we take 0.341
seconds per benchmark, while SC-Eliminator takes 2.684.

b) Empirical Asymptotic Behavior: Figure 12 compares
our implementation with SC-Eliminator on the oFdF
routine6 (Fig. 1), considering different sizes for the input
arrays. For arrays of size N, the main loop is modified—
statically—to run N iterations. This experiment lets us probe
the asymptotic behavior of both tools, by varying the size of
the program that must be generated. Both implementations
seem to be linear on N. If we let Ct represent the time
that our implementation takes, and Cm the time that Wu
et al’s implementation takes to run, then we have almost
perfect fits for the lines Ct = 0.0002 × N − 0.0313 and
Cm = 0.001 × N − 0.215 (both have R2 > 0.94 with p-
values close to zero). Our implementation scales better, given
the smaller slope.

4We are showing results for -O1 only, to save space, but our findings
remain true for the other levels that we have evaluated, namely -O2, -O3, and
-Oz.

5There exist also programs that are inherently operation variant. Such is
the case of a program that contains a loop bounded by sensitive data. The
benchmarks used in this paper do not show this behavior.

6We have observed that the code that SC-Eliminator produces for
oFdF is not correct. Nevertheless, we show the time that SC-Eliminator
takes to produce this program, to give the reader some perspective on the
quality of our implementation.

* h
as

h/m
d5

* d
ud

ec
t/a

es
32

* d
ud

ec
t/d

on
na

ba
d

ch
ro

no
s/a

es
ch

ro
no

s/d
es

ch
ro

no
s/d

es
3

ch
ro

no
s/a

nu
bis

ch
ro

no
s/c

as
t5

ch
ro

no
s/c

as
t6

ch
ro

no
s/f

cry
pt

ch
ro

no
s/k

ha
za

d
fel

ics
/lb

loc
k

fel
ics

/pi
cc

olo
fel

ics
/pr

es
en

t
fel

ics
/tw

ine
su

pe
rco

p/a
es

su
pe

rco
p/c

as
t

ap
pli

ed
-cr

yp
to

/3w
ay

ap
pli

ed
-cr

yp
to

/de
s

ap
pli

ed
-cr

yp
to

/lo
ki9

1

lib
gc

ry
pt

/ca
mell

ia
lib

gc
ry

pt
/de

s
lib

gc
ry

pt
/se

ed

lib
gc

ry
pt

/tw
ofi

sh

10−2

10−1

100

101

M
ea

n
of

 tr
an

sf
or

m
at

io
n

ru
nn

in
g

tim
e

(s
) This paper

Wu

Fig. 11. Time to apply program repair in actual implementations of cryp-
tography. Benchmarks prefixed by an asterisk are those in which Wu et al.’s
artifact failed to run.

0 256 512 768 1024
of cells of input arrays

0.0

0.5

1.0

M
ea

n
of

 tr
an

sf
or

m
at

io
n

ru
nn

in
g

tim
e

(s
) This paper

Wu

Fig. 12. Time to repair function oFdF, considering different sizes of the
input arrays a and b. This size determines the maximum number of iterations
in the loop.

B. RQ2 – Time Overhead

Repair slows down programs as a consequence of extra
instructions inserted to preserve time invariance. This section
analyzes such impact.

a) Cryptographic routines: Figure 13 shows the impact
of program repair on cryptographic benchmarks, considering
codes without and with optimizations. Regarding only the code
that SC-Eliminator handles, our technique slows down
programs by 55%, on average (geometric mean of ratios).
SC-Eliminator causes a slowdown of 127%. Optimiza-
tions reduce this impact: our slowdown is of 50%, whereas
Wu’s is 106%. The averaged running time of all the optimized
benchmarks is 77.0 µs. Same number for the programs after
our transformation is 127.4 µs. Wu’s is 266.001 µs. Notice
that the implementation of SC-Eliminator differs from
ours in a number of ways, which cause the relative slowdown

101

102

103

104

Orig This paper Wu
* h

as
h/m

d5

* d
ud

ec
t/a

es
32

* d
ud

ec
t/d

on
na

ba
d

ch
ro

no
s/a

es
ch

ro
no

s/d
es

ch
ro

no
s/d

es
3

ch
ro

no
s/a

nu
bis

ch
ro

no
s/c

as
t5

ch
ro

no
s/c

as
t6

ch
ro

no
s/f

cry
pt

ch
ro

no
s/k

ha
za

d
fel

ics
/lb

loc
k

fel
ics

/pi
cc

olo
fel

ics
/pr

es
en

t
fel

ics
/tw

ine
su

pe
rco

p/a
es

su
pe

rco
p/c

as
t

ap
pli

ed
-cr

yp
to

/3w
ay

ap
pli

ed
-cr

yp
to

/de
s

* a
pp

lie
d-

cry
pt

o/l
ok

i91

lib
gc

ry
pt

/ca
mell

ia
lib

gc
ry

pt
/de

s
lib

gc
ry

pt
/se

ed

lib
gc

ry
pt

/tw
ofi

sh

101

102

103 Orig (opt)
This paper (opt)

Wu (opt)

M
ea

n
of

 p
ro

gr
am

 ru
nn

in
g

tim
e

(μ
s)

Fig. 13. Impact of program repair on the running time of implementations of
cryptography. Benchmarks prefixed by an asterisk are those that Wu et al.’s
program repair either failed to transform or produced incorrect results.

of the code that it produces. Mostly, it inserts code to read
arrays before loops, to bring the data to cache. In our case,
this procedure is not necessary. Also, Wu et. al’s approach re-
quires that conditional statements be transformed into Single-
Entry-Single-Exit regions—such transformation accounts for
a handful of instructions that are absent in the code that we
produce.

b) Empirical Asymptotic Behavior: Figure 14 compares
the running time of original and transformed versions of
function oFdF for different sizes of input arrays. As seen in
Section IV-A, the length of these arrays determines the number
of iterations of the loop at Lines 2-6 in Fig. 1. Regardless of
the contents of the array, the transformed function will run the
same operations. Visual comparison of Figures 14 (a) and (b)
provides some indication of this fact. The original function, in
contrast, only runs all the iterations of the main loop when the
two input arrays store the same values. Both programs show
linear behavior on N, the number of cells in the input array.
Let To be the running time of the original program, and let
Tt be the running time of the transformed version, when both
receive arrays of equal contents. The following relation yields
a strong linear fit: Tt = 3.8To− 2.52, with R2 > 0.94, and p-
value close to zero. Thus, our transformation, in the absence of
compiler optimizations, imposes a a four-fold overhead onto
the original program.

However, compiler optimizations have a much stronger
effect onto the transformed program. The lower charts in
Figure 14 support this statement. The total absolute running
time that the original (optimized) program takes to process
the 32 arrays (with equal contents) is 37.5 seconds. The

(a) a[i] == b[i]

2

4

6

8 Orig
This paper

(b) a[0] != b[0]

Orig
This paper

0 256 512 768 1024

1.15

1.20

1.25

1.30
Orig (opt)
This paper (opt)

0 256 512 768 1024

Orig (opt)
This paper (opt)

of cells of input arrays

M
ea

n
of

 p
ro

gr
am

 ru
nn

in
g

tim
e

(μ
s)

Fig. 14. Comparison of the running time of different implementations of
function oFdF (Fig. 1, pg. 2). This size determines the maximum number of
iterations in the loop.

transformed program, in turn, once optimized, takes 37.2
seconds in total to process the same 32 arrays. In this case, it
does not matter if the arrays are the same or not: the algorithm,
even when optimized, is still time invariant.

C. RQ3 – Size Overhead

Repair increases programs, because it augments them with
the extra instructions necessary to ensure time and data invari-
ance. This section analyzes this growth.

a) Cryptographic routines: Figure 15 compares the
size—in number of LLVM instructions—of original and
repaired cryptographic libraries. There are two versions
of repaired code: ours and the ones produced by
SC-Eliminator. When analyzing non-optimized programs,
on average, our technique increases code size by 154% (geo-
metric mean of ratios). SC-Eliminator increases code size
by 331%. In absolute numbers, the original programs add up
to 141,945 LLVM instructions. Our transformation moves this
number up to 427,145 instructions, while SC-Eliminator
yields 786,235 instructions. Optimizations have a strong effect
on this growth. The optimized versions of the original pro-
grams contain 89,326 instructions. Programs repaired with our
techniques, when optimized, add up to 150,782 instructions;
SC-Eliminator yields 661,735 instructions.

b) Empirical Asymptotic Behavior: Figure 16 analyzes
the asymptotic behavior of our transformation, considering
unoptimized and optimized repaired versions of oFdF (Fig. 1).
The figure uses log-scale; however, growth, in both cases, is
linearly proportional to the number of iterations of the loop at
Lines 2-6 of Figure 1. For the unoptimized codes, the linear
relation is essentially a perfect fit (R2 = 1). Once optimiza-
tions are considered, the coefficient of determination is much
weaker: 0.26 (comparing optimized versions of the original
and transformed codes). In general, the transformed program
will be 3.8 times larger than the original program (without

103

104

105
Orig This paper Wu

* h
as

h/m
d5

* d
ud

ec
t/a

es
32

* d
ud

ec
t/d

on
na

ba
d

ch
ro

no
s/a

es
ch

ro
no

s/d
es

ch
ro

no
s/d

es
3

ch
ro

no
s/a

nu
bis

ch
ro

no
s/c

as
t5

ch
ro

no
s/c

as
t6

ch
ro

no
s/f

cry
pt

ch
ro

no
s/k

ha
za

d
fel

ics
/lb

loc
k

fel
ics

/pi
cc

olo
fel

ics
/pr

es
en

t
fel

ics
/tw

ine
su

pe
rco

p/a
es

su
pe

rco
p/c

as
t

ap
pli

ed
-cr

yp
to

/3w
ay

ap
pli

ed
-cr

yp
to

/de
s

* a
pp

lie
d-

cry
pt

o/l
ok

i91

lib
gc

ry
pt

/ca
mell

ia
lib

gc
ry

pt
/de

s
lib

gc
ry

pt
/se

ed

lib
gc

ry
pt

/tw
ofi

sh
103

104

105 Orig (opt) This paper (opt) Wu (opt)

of

 L
LV

M
-IR

 in
st

ru
ct

io
ns

Fig. 15. Impact of program repair onto the size of actual implementations of
cryptography. Benchmarks prefixed by an asterisk are those that Wu et al.’s
program repair either failed to transform or produced incorrect results.

0 256 512 768 1024

103

104

of

 L
LV

M
-IR

 in
st

ru
ct

io
ns

Orig
This paper

0 256 512 768 1024

Orig (opt)
This paper (opt)

of cells of input arrays

Fig. 16. Comparison of the number of LLVM instructions in different
implementations of function oFdF (Fig. 1, pg. 2).

optimizations) and 1.8 times larger when optimizations are
considered. But, in this last case, ratios vary substantially.

V. RELATED WORK

Information leakage is a critical problem in cryptography,
with several vulnerabilities having been uncovered in the past

three decades. Early forays in the field started with Kocher [4],
who, in the mid-nineties, demonstrated timing attacks in algo-
rithms such as Diffie-Hellman and RSA. Since then, flaws have
been exposed in widely used cryptographic routines [1]–[3],
[5]. For instance, Brumley and Tuveri [3] presented a timing
attack vulnerability in OpenSSL’s ladder implementation for
elliptic curves over binary fields. Consequently, much effort
has been put into developing techniques to either detect,
mitigate or completely eliminate side channels. This paper fits
into the third category.

a) Detection of Side Channels: Most of the literature
concerning side channels refer to their identification, not to
their elimination. For instance, Rodrigues et al. [18] rely on
the properties of Static Single Assignment form to design
an efficient detection technique that operates on the LLVM
intermediate representation. Around the same time (2016-
17), Almeida et al. [7] and Reparaz et al. [6] introduced
techniques to determine whether code runs in constant time
or not. Ngo et al. [8] described a type system for verifying
that a code correctly implements constant-resource behavior.
More recently, Guarnieri et al. [10] introduced a framework
for specifying hardware-software contracts that assert which
program executions an adversary can distinguish. A CPU
satisfies a contract if, whenever two program executions agree
on all observations, they are guaranteed to be indistinguishable
by the adversary at the microarchitectural level.

b) Elimination of Side Channels: Compiler optimiza-
tions may break constant-time properties that hold at the
source code level. From this observation, Barthe et al. [9] have
presented a modified version of CompCert [29] that preserves
such guarantees. Yet, Barthe’s work is rather preventing the
need for program repair than actually repairing code. On the
other hand, there exists a wide range of approaches to mitigate
information leakage due to time-based side channels [8], [11]–
[15], [21], [30]. The seminal work in the field is due to Johan
Agat, who has proposed a type system and a type-directed
transformation to repair programs [11]. Agat’s technique,
and also several of its successors, work by equalizing the
time spent on distinct branches within a program. These
approaches essentially seek a trade-off between the overhead
imposed upon the transformed program and the amount of
leakage that they mitigate. For instance, Niari et al. explicitly
guarantee a user-specified maximum acceptable performance
overhead [15].

However, as stated by Wu et al., such methods deliver
weak guarantees, due to the presence of hidden states at mi-
croarchitectural levels and related performance optimizations
inside modern CPUs. Thus, to the best of our knowledge, the
strongest guarantees in terms of program repair are currently
provided by Wu et al.’s [21]. We believe that Rane et al.’s [30]
work might provide equally strong guarantees as Wu’s, yet
such guarantees are not explicitly stated. Nevertheless, as we
have discussed in Section II, these approaches still suffer from
a number of shortcomings that justify the developments in
this paper. In particular, although both Wu et al. and Rane
et al. provide arguments about the absence of side channels,

they do not discuss the issue of memory safety—a problem
present in both techniques. As a final remark about security
guarantees, notice that all the works discussed in this section,
ours included, can only change the program, but not the
micro-instructions that execute it. Sensitive inputs can still
influence the order in which micro-instructions run, if the
target processor speculates on values stored in registers.

VI. CONCLUSION

This paper presented a code transformation technique to
eliminate time-based side channels. This transformation en-
sures that a program always runs the same operations and ac-
cesses the same data, regardless of inputs. Contrary to previous
work, our program repair is memory safe: it will not cause the
modified program to access out-of-bounds memory. To make
safety possible, we augment the interface of functions with
memory contracts: extra arguments representing valid limits of
arrays. In addition to enabling memory safety, said contracts
lead to a simple and efficient interprocedural implementation
of program repair. This implementation is today publicly
available as an LLVM pass. The empirical evaluation discussed
in this paper indicates that it outperforms previous techniques
in terms of repairing time and quality of the generated code.

ACKNOWLEDGMENT

This work has been made possible by grants from different
research agencies, namely CNPq, CAPES and FAPEMIG.
We thank Augusto Noronha and José Wesley Magalhães for
reading a draft of this work. We also thank the CGO reviewers,
for all the time and expertise they have put into our paper.

REFERENCES

[1] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater, and J.-
L. Willems, “A practical implementation of the timing attack,” in Smart
Card Research and Applications, J.-J. Quisquater and B. Schneier, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 167–182.

[2] D. Brumley and D. Boneh, “Remote timing attacks are practical,”
Computer Networks, vol. 48, no. 5, pp. 701 – 716, 2005, web
Security. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1389128605000125

[3] B. B. Brumley and N. Tuveri, “Remote timing attacks are still practical,”
in Computer Security – ESORICS 2011, V. Atluri and C. Diaz, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 355–371.

[4] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” in Advances in Cryptology — CRYPTO
’96, N. Koblitz, Ed. Berlin, Heidelberg: Springer, 1996, pp. 104–113.

[5] W. Schindler, “A timing attack against rsa with the chinese remainder
theorem,” in Cryptographic Hardware and Embedded Systems — CHES
2000, Ç. K. Koç and C. Paar, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2000, pp. 109–124.

[6] O. Reparaz, J. Balasch, and I. Verbauwhede, “Dude, is my code constant
time?” in DATE. Leuven, BEL: European Design and Automation
Association, 2017, p. 1701–1706.

[7] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying constant-time implementations,” in Proceedings of the 25th
USENIX Conference on Security Symposium, ser. SEC’16. USA:
USENIX Association, 2016, p. 53–70.

[8] V. C. Ngo, M. Dehesa-Azuara, M. Fredrikson, and J. Hoffmann, “Ver-
ifying and synthesizing constant-resource implementations with types,”
in Security and Privacy. Washington, DC, USA: IEEE, 2017, pp. 710–
728.

[9] G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte, D. Pichardie,
and A. Trieu, “Formal verification of a constant-time preserving C
compiler,” Proc. ACM Program. Lang., vol. 4, no. POPL, Dec. 2019.
[Online]. Available: https://doi.org/10.1145/3371075

[10] M. Guarnieri, B. Köpf, J. Reineke, and P. Vila, “Hardware-software
contracts for secure speculation,” 2020.

[11] J. Agat, “Transforming out timing leaks,” in Proceedings of the 27th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’00. New York, NY, USA: Association
for Computing Machinery, 2000, p. 40–53. [Online]. Available:
https://doi.org/10.1145/325694.325702

[12] J. V. Cleemput, B. Coppens, and B. De Sutter, “Compiler mitigations
for time attacks on modern x86 processors,” ACM Trans. Archit.
Code Optim., vol. 8, no. 4, Jan. 2012. [Online]. Available:
https://doi.org/10.1145/2086696.2086702

[13] A. Fell, H. T. Pham, and S.-K. Lam, “Tad: Time side-channel attack
defense of obfuscated source code,” in Proceedings of the 24th Asia
and South Pacific Design Automation Conference, ser. ASPDAC ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
58–63. [Online]. Available: https://doi.org/10.1145/3287624.3287694

[14] J. Van Cleemput, B. De Sutter, and K. De Bosschere, “Adaptive compiler
strategies for mitigating timing side channel attacks,” IEEE Transactions
on Dependable and Secure Computing, vol. 17, no. 1, pp. 35–49, 2020.

[15] S. Tizpaz-Niari, P. Černý, and A. Trivedi, “Quantitative mitigation of
timing side channels,” in Computer Aided Verification, I. Dillig and
S. Tasiran, Eds. Cham: Springer International Publishing, 2019, pp.
140–160.

[16] S. Chattopadhyay and A. Roychoudhury, “Symbolic verification of cache
side-channel freedom,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 37, no. 11, pp. 2812–2823, 2018.

[17] J. B. Almeida, M. Barbosa, G. Barthe, B. Grégoire, A. Koutsos,
V. Laporte, T. Oliveira, and P. Strub, “The last mile: High-assurance and
high-speed cryptographic implementations,” in 2020 IEEE Symposium
on Security and Privacy (SP). New York, NY, USA: IEEE, 2020, pp.
965–982.

[18] B. Rodrigues, F. M. Quintão Pereira, and D. F. Aranha, “Sparse
representation of implicit flows with applications to side-channel
detection,” in Proceedings of the 25th International Conference
on Compiler Construction, ser. CC 2016. New York, NY, USA:
Association for Computing Machinery, 2016, p. 110–120. [Online].
Available: https://doi.org/10.1145/2892208.2892230

[19] S. Chattopadhyay, M. Beck, A. Rezine, and A. Zeller, “Quantifying
the information leakage in cache attacks via symbolic execution,” ACM
Trans. Embed. Comput. Syst., vol. 18, no. 1, Jan. 2019. [Online].
Available: https://doi.org/10.1145/3288758

[20] T. Basu, K. Aggarwal, C. Wang, and S. Chattopadhyay, “An exploration
of effective fuzzing for side-channel cache leakage,” Software Testing,
Verification and Reliability, vol. 30, no. 1, p. e1718, 2020, e1718
stvr.1718. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1002/stvr.1718

[21] M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing side-
channel leaks using program repair,” in ISSTA. New York, NY, USA:
Association for Computing Machinery, 2018, p. 15–26.

[22] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, p. 1–7, 2011.

[23] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. T. Kandemir, “CaSym:
Cache aware symbolic execution for side channel detection and mitiga-
tion,” in Security & Privacy. New York, NY, USA: IEEE, 2019, pp.
505–521.

[24] A. C. Lopes and D. F. Aranha, “Benchmarking tools for verification of
constant-time execution,” in SBSEG. Bento Goncalves, Brazil: SBC,
2017, pp. 716–726, https://github.com/arthurlopes/ctbench.

[25] M. Wu, S. Guo, P. Schaumont, and C. Wang, “[ISSTA ’18
Artifact Evaluation] Eliminating Timing Side-Channel Leaks using
Program Repair,” ACM, Jun. 2018. [Online]. Available: https:
//doi.org/10.5281/zenodo.1299357

[26] V. Paisante, M. Maalej, L. Barbosa, L. Gonnord, and F. M. Quintão
Pereira, “Symbolic range analysis of pointers,” in CGO. New York,
NY, USA: Association for Computing Machinery, 2016, p. 171–181.

[27] M. Rodrigues, B. Guimaraes, and F. M. Q. Pereira, “Generation of
in-bounds inputs for arrays in memory-unsafe languages,” in CGO.
Washington, DC, USA: IEEE Press, 2019, p. 136–148.

[28] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“An efficient method of computing static single assignment form,” in
POPL. New York, NY, USA: Association for Computing Machinery,
1989, p. 25–35.

[29] X. Leroy, “Formal verification of a realistic compiler,” Commun. ACM,
vol. 52, no. 7, p. 107–115, 2009.

[30] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels
through obfuscated execution,” in SEC. USA: USENIX Association,
2015, p. 431–446.

APPENDIX A
PROOFS

This section contains proofs of theorems that we have omit-
ted from the main body of the paper, due to space constraints.
Figure 17 shows rules that were omitted from Figure 7. These
rules are not essential to the understanding of our technique;
however, they are necessary for proving properties of our
code transformation. In particular, Figure 17 extends Figure 7
with the rules necessary to rewrite a program, in addition to
individual instructions. These rules follow closely, albeit with
different syntax, a Haskell implementation that we have used
to test our ideas. Rewriting is given in the format:

In, Out,L ` 〈{i} ∪ P, `, P ′〉 p−→ 〈P, `′, P ′ ∪ I〉 (3)

In and Out are the maps of incoming and outgoing
conditions produced after running the analysis in Figure 6.
L is a map between pointers and their lengths, as discussed
in Section III. P is the original program that must be
transformed, ` is the label of the current basic block being
analyzed, and P ′ is the transformed version of P , at the time
some instruction i is processed. The initial configuration is
always a triple formed by the original program, the label of
its entry point and the empty set. Notice that, for simplicity,
we represent the transformed program P ′ as a set. We trust
the reader to understand that once we add a new set of
instructions I to P ′, an event denoted by P ′ ∪ I , these
new instructions will be inserted into P ′ in an ordering that
respects data dependencies. Since we assume that P contains
a unique exit point (as discussed in Section III-A), the last
rule applied is always [exit]. The result of this rule is a triple
formed by the empty set, a special value ε indicating that
there are no remaining basic blocks, and a set of instructions
P ′ ∪ {ret(e)} that constitutes the transformed program. Rule
[trans] defines a transitive closure. The relation

p−→
∗

indicates
that the right-hand side is obtained from a finite sequence of
applications.

a) A Note on Semantics Preservation: The first theorem
that we discuss in this section, Theorem 1, states that our
transformations preserve program semantics. This statement
must be understood with care. The original and the trans-
formed codes are different: the latter contains a number of
variables that are not present in its original version. We argue
that set of variables defined during an arbitrary execution of
the original program is a subset of the ones defined during
any execution of its isochronous version. More formally, let
defs : Program × Input → Var be the set of definitions of
a program, given an specific input. Additionally, let P and P ′

be, respectively, the original and transformed codes. Then, for
any input I , it follows that:

[alloc] (alloc(x, e),)
i−→ ({alloc(x, e), ∅)

[mov] (mov(x, e),)
i−→ ({mov(x, e)}, ∅)

[ctsel] (ctsel(x, c, vt, vf), `)
i−→ ({ctsel(x, c, vt, vf), ∅)

[jmp] (jmp(`),)
f−→ jmp(`)

[inst]
i ∈ Instruction, In, Out,L ` (i, `)

i−→ (I,)

In, Out,L ` 〈{i} ∪ P, `, P ′〉 p−→ 〈P, `, P ′ ∪ I〉

[flow]
t ∈ {br, jmp}, next(`) = `′, (t, `′)

f−→ t′

In, Out,L ` 〈{t} ∪ P, `, P ′〉 p−→ 〈P, `′, P ′ ∪ {t′}〉

[exit] In, Out,L ` 〈{ret(e)}, `, P ′}〉 p−→
∗
〈∅, ε, P ′ ∪ {ret(e)}〉

[trans]

In, Out,L ` 〈{i} ∪ P, `, P ′〉 p−→ 〈P, `′, P ′′〉,
In, Out,L ` 〈P, `′, P ′′〉 p−→

∗
〈∅, ε, P ′′′〉

In, Out,L ` 〈{i} ∪ P, `, P ′〉 p−→
∗
〈∅, ε, P ′′′〉

Fig. 17. The complement of the transformation rules seen in Figure 7. We
assume that the exit point is unique, i.e. the program contains only one ret,
which is the last instruction. The set Instruction is the same as defined in
Figure 4. Furthermore, next(`) gives the label of the basic block that succeeds
` in topological order.

defs(P, I) ⊆ defs(P ′, I) (4)

Notice that defs(P ′, I) is the same for every I , since P ′

is operation invariant (Theorem 2). Moreover, defs(P ′, I)
encompasses all the possible definitions from the original
program, along with the definitions produced by each rule
in Figure 7. Hence, given an input I , we can understand
the correctness stated by Theorem 1 as the preservation of
the states of the variables in the set defs(P, I), during the
execution of P ′(I).

Let us assume that the original program contains an in-
struction such as load(x,m, idx). This operation might not
run in P , due its path condition being false. However, it
may execute in P ′, due to the contract created to ensure data
consistency. To understand why such divergence happens, and
its consequences, we shall use the examples in Figure 18.

Example 10. Figure 18 shows a function (labeled “Original”)
that receives a vector as an argument, plus a condition Z that
determines when the vector will be read. Its “Augmented”
version contains a new parameter, N_v, which sets a memory
contract, i.e., the triple (foo0, v, N_v). This variable is used
as an extra condition that enables access of v at Line 11.
This access would not happen in the original program. Thus,

foo0(int*	v,	int	i,	int	x,	int	Z)	{
		x	=	0;
		if	(Z)	{
				x	=	v[i];
		}
		return	x;
}

foo0(int*	v,	int	N_v,	int	i,	int	x,	int	Z)	{
		x	=	0;
		if	(Z	|	(i	<	N_v))	{
				x	=	v[i];
		}
		return	x;
}

foo0(int*	v,	int	i,	int	x,	int	Z)	{
		x0	=	0;
		if	(Z)	{
				x1	=	v[i];
		}
		//	ret	=	phi(x1,	x0)
		return	Z	?	x1	:	x0;
}

foo0(int*	v,	int	N_v,	int	i,	int	x,	int	Z)	{
		x0	=	0;
		if	(Z	|	(i	<	N_v))	{
				x1	=	v[i];
		}
		return	Z	?	x1	:	x0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Original

Augmented

Original-SSA

Augmented-SSA

Fig. 18. From top to bottom: a program, its version augmented with a
contract, a high-level representation of the original program in SSA form,
using a selector instead of a phi-function, and the same representation of the
transformed program.

variable x ends up assigned in the Augmented routine, whereas
it is not assigned after initialization in the original program.
However, as we will show in the proof of Theorem 1, this new
definition of x bears no impact on the semantics of function
foo0. In other words, its value cannot be neither stored in
memory, nor returned from foo0. It is important to remember
that the program will be converted to SSA form, and there
will be phi-functions selecting only definitions whose path
condition is true in the original program. Continuing with
our example, Figure 18 shows the original program in SSA
form, and its augmented version, also in SSA form. Notice that
the selector at Line 31 will only let the value of x1 escape
from foo0 if the condition Z is true. The second condition,
i < N v, is only used to guard loads and stores, and cannot
interfere on how the arguments of phi-functions are selected.

Theorem 1 [Correctness]. The transformations in Figure 7
(viz. Figure 17) preserve semantics.

Proof: The proof is a case analysis on each one of the
rewriting rules seen in Figures 7 and 17, plus induction
on rule [trans] (Fig. 17). This case analysis requires the
semantics of the baseline language. However, instead of
providing this semantics, we shall present the reasoning
in informal English:

alloc Nothing changes; hence, semantics is preserved.
Same reasoning works for rules [alloc], [mov],
[ctsel], [jmp], and [exit].

phi1 A single-arity phi-function is equivalent to a
move instruction, so the transformation is triv-
ially correct.

phi2 A two-arity phi-function of the form phi(x, v0:
`0, v1: `1), at a block labeled by `, is transformed
into ctsel(x, c0, v0, v1), where c0 and c1 are
the incoming path conditions that reach ` from
`0 and `1, respectively. Given that the execution
flowed to `, either c0 or (exclusively) c1 must be
true. Hence, if c0 holds, ctsel selects the value
v0; otherwise, it selects v1. In both cases, it
chooses the operand associated with the basic
block that preceded ` in the execution path,
thereby preserving the semantics of the original
operation.

phin the proof follows by induction on the number of
arguments of the phi-function. We assume that
the transformation preserves semantics for k ar-
guments. Therefore, I is a correct reconstruction
of phi(z, v1 : `1, . . . , vk : `k). We conclude by
observing that the instruction ctsel(x, c0, v0, z)
will assign v0 to x only when c0 is true. Other-
wise, it assigns z to x, which, from the inductive
hypothesis, is a correct implementation of the
other k arguments of the phi-function.

load a load(x,m, idx), at a basic block `, is trans-
formed into a sequence of instructions I such that
the last one is load(x, z3, z2). The variables z2
and z3 are the result of evaluating two ctsels. The
first is responsible for selecting the correct index,
while the second selects the memory region that
shall be accessed. Assuming the program is in
SSA-form, there are three ways for a load to
affect its result: (i) as an operand of a store;
(ii) as a value selected by some phi-node; and
(iii) as the expression returned by the program.
Since we assume that the program contains a
unique ret operation, the case (iii) is safe. The
exit block is always visited; hence, the original
load shall be executed. For case (ii), we have
already proved that the three rules related to phi-
functions preserve semantics; thus, the load only
takes effect if ` would be in the execution path
of the original program. Finally, for situation (iii)
we shall see that stores also preserve semantics.
In essence, a store instruction at `′ only modifies
the value of some memory location if Out[`′] is
true. In this case, the original store is performed.
We refer the reader to Example 10 for more
details.

store a store(v,m, idx), at a basic block `, is trans-
formed into a set of instructions I such that
the last one is store(z5, z3, z2). As in the
rule [load], the variables z2 and z3 contains,
respectively, the index and the memory region
that shall be accessed by the store operation.
The variable z5 is the result of evaluating a
ctsel(z5, c, v, z4), where c is the outgoing con-
dition of ` and z4 is the current value stored at
the memory location being accessed. Therefore,
if c is true, the original instruction is executed;
otherwise, the operation stores z4, i.e. the old
value, which means that nothing changes. Hence,
the semantics is preserved.

br Effectively, this rule eliminates a conditional
branch br(p, `t, `f) at `, linking ` with the basic
block that succeeds it in the topological order
of the control flow graph. Let It and If be
disjoint sets of instructions within the two distinct
paths created by the br operation. In other words,
either the instructions in It or (exclusively) in If
are executed. Since, from the previous cases, we
know that the discussed operations preserve the
semantics of a program, an instruction it ∈ It
only takes effect if and only if p is true; for
if ∈ If , is the opposite case, i.e. if and only if p
is false. Hence, we conclude that the semantics
is preserved.

flow The proof follows immediately from the cases
for rules [jmp] and [br].

trans The proof follows by induction on the number of
steps in the relation

p−→
∗

.

Theorem 2 [Operation Invariance]. The transformations in
Figure 7 (viz. Figure 17) yield an operation-invariant program.

Proof: Let
〈P, `, P ′〉 p−→

∗
〈∅, ε, P ′′〉,

be a finite sequence of rule applications, producing the
final program P ′′. Let k be the total number of conditional
branches within the original program P . In other words,
there are k ≥ 0 transformations of the form

(br(p, `t, `f), `
′)

f−→ jmp(`′)

in the sequence above. Each of them replaces one of the
n conditionals by an unconditional statement. Therefore,
the transformed code P ′′ contains no instructions of the
form br(p, `f , `t), meaning that all operations within P ′′

shall be executed regardless of any input. Hence, P ′′ is
operation invariant.

Theorem 3. The transformations in Figure 7 ensure data
invariance when applied onto a data-consistent program.

Proof: A data-consistent program P always access the
same set of memory addresses, regardless of its inputs.
As stated in Section II-D, data consistency is a form of
weak data invariance that does not impose any constraints
in the ordering of the accesses. In other words, P always
access the same set of memory locations for any possible
execution path. Let k be the number of paths in the
execution flow of P , and n be the number of memory-
related instructions in each one of them. Moreover, Let

〈P, `, P ′〉 p−→
∗
〈∅, ε, P ′′〉,

be a finite sequence of rule applications, producing the
final program P ′′. Note that the rule [br] eliminates every
conditional statement, thereby generating a transformed
code with a unique execution path. Furthermore, P ′′

contains k × n memory-related operations, which, for all
intents, are the original n instructions within each one of
the k execution paths of P . Therefore, P ′′ always access
the same set of memory addresses, in the same order.
Hence, it is data invariant.

Corollary 1 [Isochronicity]. Let P be a data-consistent pro-
gram. The transformations in Figure 7 produce an isochronous
version of P .

Direct consequence of Theorems 2 and 3.

b) A Note on Data Consistency.: Theorem 3 delivers data
invariance only if the input program is data consistent. This
pre-condition—data consistency—might seem, in principle,
too restrictive. However, in the absence of data consistency,
memory-safe program repair is impossible in general, as
illustrated by Examples 2 and 3. There exist a general family
of programs that cannot be made data consistent. These are
programs in which the input itself is used to index memory,
as Example 11 illustrates.

Example 11 (Data-Inconsistent Program). The code labeled
“Original”, in Figure 18 is not data consistent. The address
accessed at Line 4 depends on the input. The three other
versions of that program remain data inconsistent, as each
access to v[i] is indexed by i, which is a program input.

As Example 11 shows, a memory contract will not guarantee
data consistency if inputs are used to index memory—it is
part of the semantics of the algorithm to be data inconsistent.
Rather, the raison d’être of a memory contract is to ensure
memory safety. Notice that reading the entire memory at the
beginning of the target function—an approach often used to
ensure data invariance—does not bring isochronicity. First,
because this approach depends on the size of the cache, i.e.,
it is architecture dependent. Second, because it is always
possible to devise an input array larger than any cache;
therefore, misses will invariably happen.

In the absence of data consistency, we still provide
operation invariance and memory safety (Covenant 1).
Consequently, the results in Corollary 1 are true for
data-consistent programs. However, the Theorem 4, to be
discussed, holds for any program. Finally, a last remark
is in order: memory contracts are meant to be established
automatically; however, there are situations in which such
automatic bindings are not possible, e.g., when dealing
with pointers of pointers, for instance. In such situations,
developers can still use repaired functions. Nevertheless, they
will have to furnish sizes of arrays themselves in order to meet
the requirements imposed by the extended function signatures.

Theorem 4. Let f be a function. The transformations in
Figure 7 are memory-safe, as long as the preconditions in
f ’s contract (Definition 2) are met.

Proof: Let
〈P, `, P ′〉 p−→

∗
〈∅, ε, P ′′〉,

be a finite sequence of rule applications, producing the
final program P ′′. P is the set of instructions in function f .
There are two memory-related instructions in the baseline
language depicted in Figure 4: load and store. Let k be the
number of loads within the original program P . In other
words, there are k ≥ 0 transformations of the form

(load(x,m, idx), `)
i−→ (I, V)

in the sequence above. The instruction

load(x, z3, z2) ∈ I

is the last one in the sequence produced by the rule [load].
The variables z2 and z3 are defined by two ctsel operations

that use the same condition z1. In turn, z1 = c | z0,
where c is the outgoing condition of the basic block `

that contains the load instruction, z0 = idx < n, and
n is the symbolic bound associated with the pointer m.
If c is true, the original instruction is executed; thus, the
address accessed is the same as for the original program
(i.e. z3 = m and z2 = idx). Otherwise, the instruction
would not be in the execution path of the original code,
but it still need to be executed in the isochronous version;
we call it a zombie operation. Let idx > n. This implies
that m at position idx cannot be used by the zombie load
(i.e. it is not safe). In such case, the location given by
z3 at position z2 is of the shadow memory, which still
is a valid region. The same reasoning applies to store
operations. Therefore, we conclude that every memory
related instruction in P ′′ is memory-safe, as long as the
preconditions in f ’s contract are met.

APPENDIX B
ARTIFACT

A. Abstract

Our artifact is a docker image (Arch Linux, AMD64)
containing all the scripts and binaries necessary to reproduce
the experiments described in section IV. It also includes the
source code of all the benchmarks that we used. Although
the source code of our transformation tool is not distributed
with the docker image, it is publicly available on Github:
https://github.com/lac-dcc/lif/tree/artifact/cgo.

The workflow consists of building the benchmarks, col-
lecting data, and generating the charts shown in section IV.
For the first step, it is expected that our tool works for all
programs, including those in which Wu et al.’s prototype
failed. Then, we collect information about the execution time
of the benchmarks, running time of the transformations, and
the size of the original and modified programs. We also use
cachegrind to extract data related to the read/write hits and
misses, which helps to verify whether the produced codes are
indeed isochronous.

B. Artifact check-list (meta-information)
• Algorithm: Memory-safe elimination of timing-based side

channels.
• Program: CTBench and the benchmarks distributed in Wu

et al.’s ACM artifact.
• Compilation: Clang 10.0.1 and LLVM 10.0.1 (both included

in the docker image).
• Transformations: LLVM and Wu et al.’s transformation

pass (included).
• Binary: All required binaries included (AMD64).
• Run-time environment: The artifact is not OS specific and

only requires Docker to be installed.
• Run-time state: For low-variance results, we recommend

running the experiments on a system without other
compute- or memory-intensive applications running in the
background.

• Metrics: Execution time and program size.
• Output: Graphs, along with the data (CSV files) used to

generated them (available inside the container).

• Experiments: Use the run.sh script to build the bench-
marks, collect the data, and generate the graphs.

• How much disk space required (approximately)?: 2.2 GB.
• How much time is needed to prepare workflow (approx-

imately)?: Depends solely on the time do download the
(compressed) docker image (approximately 1 GB).

• How much time is needed to complete experiments (approx-
imately)?: 2˜3 hours.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: GPL3.
• Archived (provide DOI)?: Yes (10.5281/zenodo.4266870).

C. Description

1) How delivered: Our source code, benchmarks, and
scripts are available on Github: https://github.com/lac-dcc/lif/
tree/artifact/cgo. The artifact (docker image) can be down-
loaded either from a Docker Hub repository (https://hub.
docker.com/repository/docker/luigidcsoares/lif) or from Zen-
odo (https://zenodo.org/record/4266870).

2) Software dependencies: In order to use the artifact, only
Docker is required (the dependencies are all included). To
build the project from scratch, it is necessary to have installed
Clang 10.0.1 and LLVM 10.0.1. You will also need Python
3.8.6, along with a few packages, in order to reproduce the
experiments. In this case, check the READMEs in the Github
repository.

D. Installation

There is a ready-to-use Docker7 image available, filled
with all the binaries and scripts necessary to reproduce the
experiments presented in this paper. In order to use it, you
will have to download the image. In this case, there are two
options:
• Docker Hub:

$ docker pull luigidcsoares/lif:cgo

• Zenodo: You can either download the image from https:
//zenodo.org/record/4266870 or use zenodo_get8:

$ zenodo_get 10.5281/zenodo.4266869
$ docker load -i lif-cgo.tar.gz

E. Experiment workflow

The experiment workflow consists of compiling a set of
benchmarks in three distinct ways: (i) without any modifica-
tions; (ii) transformed by the prototype that implements the
technique described in this paper; and (iii) modified by the
program repair method proposed by Wu et al. Furthermore,
for each one of the three compilation workflows, two versions
of the same program will be produced: unoptimized and
optimized via -O1 flag.

Each benchmark contains at least two distinct main source
codes, with different inputs. After compiling them, we run the
original version as well as the code produced by Wu et al.’s
and our tools, and verify if the outputs are the same. Then, we

7https://www.docker.com/
8https://github.com/dvolgyes/zenodo get

collect the following information from each program version:
read/write hits and misses (from cachegrind); execution
time of the program; size of the program; and execution time
of the transformations (both our and Wu et al.’s). Once the
data is collected, we use them to plot the charts.

F. Evaluation and expected result

In order to reproduce the research questions, you will need
to run docker with a volume attached (a shared folder between
the host and the container). This way, you will have access to
the generated figures in the host. For that, you can proceed as
follows:

$ docker run \
-v $(pwd)/figures:/lif/llvm/bench/figures \
-it luigidcsoares/lif:cgo /bin/bash

Once inside the container, you will have access to all
the scripts, binaries, and benchmarks necessary to run the
experiments. After finishing them, the shared folder figures
will be filled with all the graphs presented in section IV. First
you will need to build all the benchmarks. To do that, run the
following command:

$./run.sh -b

There will be three types of outputs: (i) pass, in case
the original and the transformed programs produce the same
result; (ii) fail, in case the results are different; and (iii) LLVM
error, if the tool could not be applied to the program. As seen
in section IV, Wu et al.’s tool could not handle some programs.
In such cases, the output will be either (ii) or (iii). In constrast,
our prototype is expected to pass on all the benchmarks.

Now, run the commands below to collect the data about
each benchmark and generate the graphs. The second line
will copy the generated charts to the shared folder figures,
renaming them to match with the figures in the paper. This
way, all the charts will be available in your host, in the folder
$(pwd)/figures.

$./run.sh -c && ./run.sh -p
$ cp results/pass_time.pdf figures/11.pdf \
&& cp results/exec_time.pdf figures/13.pdf \
&& cp results/size.pdf figures/15.pdf \
&& cp comp/results/pass_time.pdf figures/12.pdf \
&& cp comp/results/exec_time.pdf figures/14.pdf \
&& cp comp/results/size.pdf figures/16.pdf

In addition, inside the container you will also have access to
files generated individually for each benchmark, which were
used to produce the charts. You will also have access to the
cachegrind reports. You can visualize them using vim:

$ vim meng/chronos/aes/results/exec_time.csv
$ vim meng/chronos/aes/results/pass_time.csv
$ vim meng/chronos/aes/results/size.csv
$ vim meng/chronos/aes/results/cachegrind.csv

G. Methodology

Submission, reviewing and badging methodology:
• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/

artifact-review-badging

