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Abstract. The term “Open Banking” describes a series of global initia-
tives to allow the sharing of customer data between financial companies
to facilitate competition within their sector. In this paper, we formalise
in the rigorous framework of quantitative information flow (QIF) rel-
evant privacy risks in a concrete Open Banking scenario, namely: (i)
transaction-history recovery and (ii) collateral attribute-inferences using
external correlations. We provide extensive analyses of these risks in real-
world data from Open Banking, supplied by a fintech in Australia. We
show that the Open Banking system studied presents considerable pri-
vacy risks with respect to transactions, both in the presence and in the
absence of demographic data. Finally, we exemplify potential real-world
collateral attribute-inference attacks, in which we show how an attacker
might leverage scientific correlations to infer individuals’ level of neuroti-
cism and self-control from their transaction history. We hope that this
work may: (i) help financial customers in Australia make better-informed
decisions about what kind of information, and how much of it, to share
via Open Banking; (ii) raise awareness about the potential privacy risks
of Open Banking in other countries; and (iii) foster the development of
privacy regulation in digital finance and the open data economy.

Keywords: Open Banking, Privacy-Risk Analysis, Quantitative Infor-
mation Flow

1 Introduction

The term “Open Banking” describes a series of global initiatives to allow the
sharing of customer data between financial companies, such as banks or fintechs
(i.e., financial technology companies), in order to facilitate competition within
their sector. Under Open Banking, financial institutions provide access to cus-
tomer banking information via an API.? Customers then provide consent for 3rd
parties to access all or some of their banking information. The advantage to the

3 See https://standards.openbanking.org.uk /api-specifications/ or https:
/ /consumerdatastandardsaustralia.github.io /standards/#banking-apis


https://standards.openbanking.org.uk/api-specifications/
https://consumerdatastandardsaustralia.github.io/standards/#banking-apis
https://consumerdatastandardsaustralia.github.io/standards/#banking-apis

2 Soares et al.

customer is that it (ideally) gives them control over the sharing of their financial
data, facilitating access to new financial products or services. The advantage
to the financial sector is that it encourages new business models and provides
opportunities for smaller fintechs to evaluate customers without requiring nego-
tiation with other banks or relying on customer-provided information.

In this work, we provide a thorough formal analysis of privacy risks associated
with sharing de-identified data via Open Banking. This involves (i) transaction
data, which is de-identified data released via Open Banking and includes details
of individual transactions such as amount spent, vendor, location, and date,
and (ii) in some cases, demographic data, which is de-identified personal data
including details such as age, gender, zip code, and job. More precisely, we assess
the sensitive information that can be inferred from the collected datasets by any
entity with access to them (e.g., the financial institution that collected the data
in the first place or any other 3rd party with whom the data is shared).

We formalise our attack models in the rigorous mathematical framework of
quantitative information flow (QIF) [3]. A crucial advantage of the use of QIF is
that it allows for great flexibility in privacy analyses, since variations of practical
scenarios of interest can be seamlessly captured in the framework. We notice,
however, that QIF is not a privacy guarantee that a system may satisfy (such as
differential privacy or k-anonymity, for some proper choice of parameters), but
it is rather a framework for quantifying the privacy provided by the system in
terms of its resistance to inference attacks. This is a crucial advantage of QIF:
its guarantees are presented in terms of threats, which are easier to interpret
for data managers and consumers. In terms of scalability, QIF has been put to
test in a thorough formal privacy analysis of the Official Educational Censuses
in Brazil, covering over a decade of microdata for more than 65 million individ-
uals [4], which led to concrete changes in data-release policies by the Brazilian
government.? Moreover, QIF has been successfully applied to a wide variety
of scenarios that can be modelled as some form of information flow, including
privacy and security [17,13,5,1,10], machine learning [23,27], and fairness [6].

Contributions. We rigorously formalise and provide extensive analyses of privacy
risks in real-world data from Open Banking, supplied by a fintech in Australia:

— Transaction-history recovery: Success in recovering all transactions pro-
vided by a customer is clearly a damaging scenario, since it may lead the
adversary to infer sensitive attributes, such as customers’ buying habits,
stores visited, or income. The availability of demographic data can facilitate
this process. Nevertheless, as we shall see, this attack remains possible even
without any sort of personal information at the adversary’s disposal.

— Collateral attribute-inference: A crucial novelty of our work is the as-
sessment of a more subtle privacy risk: collateral attribute-inference (ak.a.,
Dalenius attacks in QIF [2,3]). In this case, the goal is not to infer individu-
als’ attributes that are explicitly present in the dataset, but to exploit known

4 In Portuguese: https://www.gov.br/inep/pt-br/assuntos/noticias/institucional /
nota-de-esclarecimento-divulgacao-dos-microdados.
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correlations between attributes in the dataset with sensitive information not
explicitly present in the dataset. Such correlations have been used in, e.g., the
Cambridge Analytica scandal to sway voters during elections, with dire con-
sequences.® We exemplify a possible real-world collateral-inference attack,
where we demonstrate how to leverage external, known correlations to infer
individuals’ personality traits from their financial activities.

Moreover, we set up a rigorous framework that can be used to model other Open
Banking scenarios in the future, and analyze the corresponding privacy threats.

Related Work. Early privacy concerns about Open Banking focused on phishing
attacks designed to lure consumers into handing over consent to their data [14].
The potential privacy risks of demographic data have been well-known since at
least Sweeney’s seminal work with the US Census [25]. Detailed transactions have
also been shown to be problematic: four data points in credit card transaction
data are enough to re-identify 90% individuals out of 1.1 million people [18§].
However, in contrast to our work, these privacy analyses are deterministic.

More recently, studies have found correlations between people’s spending be-
haviours and personal traits, which have been exploited to predict such traits.
Examples of correlations range from people’s lifestyles and preferences [12] to
(possibly) harmful correlations such as individuals’ psychological conditions [15,26]
— knowing someone’s personality traits might, for instance, bear influence on
hiring decisions, either for good or bad [7,16,19,9]. Nevertheless, to the best of
our knowledge, no previous work has formally quantitatively evaluated collateral-
inference types of information leaks from financial data due to known correla-
tions. Our analyses are in line with those of Alvim et al. [4] on educational data,
but we incorporate collateral-inferences and consider Open Banking data.

Ethical Disclosure. The demographic and transaction datasets used in this work
have been provided to us by a financial institution for the purposes of this re-
search and are not publicly available. Consent was provided by customers for use
of this data, and our use of the data has been ethically reviewed by our organ-
isation. No real information about individuals has been revealed in this paper,
as our examples use dummy names and values in place of true data. Moreover,
no real re-identification or inference was performed in our analyses, since we,
as researchers, lack the auxiliary knowledge that we assume the adversary has
about customers to complete the attacks.

Plan of the Paper. The remainder of this paper is organised as follows. Sec-
tion 2 provides necessary background on quantitative information flow (QIF). In
Section 3, we formalise our attack models in QIF. In Section 4, we analyse the
first kind of privacy risk, transaction-history recovery, both in the presence and
absence of demographic data. In Section 5, we consider the more refined scenario
in which the adversary explores a correlation to infer sensitive information not
immediately available in the database. Finally, Section 6 concludes this work.

® Information obtained from https://www.theguardian.com/news/2018/may/06/
cambridge-analytica-how-turn-clicks-into-votes-christopher-wylie.


https://www.theguardian.com/news/2018/may/06/cambridge-analytica-how-turn-clicks-into-votes-christopher-wylie
https://www.theguardian.com/news/2018/may/06/cambridge-analytica-how-turn-clicks-into-votes-christopher-wylie

4 Soares et al.
2 Preliminaries: QIF

In this section, we review fundamental concepts from quantitative information
flow (QIF) that we use to formalise privacy risks. Our model assumes a Bayesian
adversary who makes an optimal guess by combining their prior knowledge of
the data-sharing mechanism with some auxiliary information.

Secrets, Prior Knowledge, and Prior Vulnerability. A secret X models the in-
formation sought by the adversary; the set of possible secrets is denoted by X.
The adversary’s prior knowledge about the secrets can be modelled as a distri-
bution 7 € DX, where DX denotes the set of all probability distributions over
the values in X'. We write m, for the probability assigned by 7 to secret value x.

In this work, we adopt as a privacy measure the Bayes vulnerability, which
is closely related to Rényi min-entropy and Bayes risk [21,24,8]. It represents
the adversary’s probability of guessing the secret value correctly in one try. (See
Appendix A for a deeper discussion on privacy measures in QIF.) The prior
Bayes vulnerability can be computed as

V(n) = max ;. (1)

Chanmels, Posterior Knowledge, and Posterior Vulnerability. The secret value is
fed into and processed by a system (modelled as a channel) that produces some
observable behaviour that the adversary can use to launch an attack. Formally,
an information-theoretic channel C : X — D) takes an input (secret) xz € X
and produces an output (observation) y € ) according to some distribution in
DY. When X and Y are discrete, we write C' as a matrix whose element C; ,
is the probability of producing output y € Y when the input is € X. Rows in
C are distributions over Y; if C' is deterministic, every entry in C' is 0 or 1, and
each row contains exactly one value 1. By combining the prior 7 : DX on secrets
with knowledge of the channel C : X — DY representing how the system works,
the adversary can compute a joint distribution 7>C': D(X x )):

(moC) g,y = TCy y, for every x € X and y € V. (2)

Now, from the joint 7>C, the adversary can perform Bayesian reasoning to up-
date their knowledge about the secret from the prior 7 to a revised knowledge
consisting of: (i) a marginal distribution on possible values of y obtained as

p(y) S (1C)ay, (3)

zeX

and (ii) for each observation y, a posterior distribution §¥ on set X’ obtained as
the conditional probability p(x | y), i.e.,

(Wbc)x,y
p(y)

oY def , for each z € X. (4)
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Fig. 1: Collateral-inference leakage: a channel C' maps X to Y, but the secret of
interest is another value Z correlated with X. Observations of the output Y of
C can leak information about Z, given the correlation between X and Z.

Leakage Z--Y?

The adversary’s posterior knowledge is denoted by [w>C], and consists of the dis-
tribution on the output values y € ) together with each corresponding posterior
distribution 0¥ on secret values (that is, each §¥ is the updated probability of
secret value x given that output value y was observed). We consider two possible
definitions of posterior Bayes vulnerability in this paper:

— Dynamic posterior Bayes vulnerability, which corresponds to the adversary’s
maximum probability of guessing the secret value correctly for a fixed ob-
servation y. It is defined as

VY] v (oY) (5)

— (Ezpected/static) posterior Bayes vulnerability, which corresponds to the
expected maximum probability of the adversary guessing the secret correctly,
weighted over all possible values y that the observation can take. It is

VireCl S Y p)VV im0l = 3 max(reC)ay. (6)

yey yey

Information Leakage. Finally, we can compute channel leakage as the ratio be-
tween posterior and prior vulnerabilities. This corresponds to the multiplicative
factor by which the observation of the system increases the adversary’s max-
imum probability of guessing the secret value correctly. In the context of this
paper, this captures to how much the customers’ privacy risk has increased.

Collateral-Inference Leakage (a.k.a., Dalenius-Scenarios Leakage). Up to this
point, we have computed the leakage of secret X caused by a channel C. But
now assume that there is another secret Z from a set Z that: (i) apparently has
nothing to do with C, but (ii) is correlated with X via some joint distribution
IT : D(Z x X) known to the adversary. In this case, we can quantify how much
C' (surprisingly) teaches the adversary about Z, as in Figure 1.

Notice that the joint I7 : D(Z x X’) must induce the marginal distribution 7
on X that is the prior to channel C. IT also induces a prior p : DZ representing
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Table 1: Relevant fields from each dataset in our attacks. Fields marked as “QID”
were considered as the adversary’s auxiliary knowledge, whereas fields tagged as
“Secret” are the sensitive information that adversaries seek to learn.

Field Description Role
)
g | Age Customer’s exact age QID
c%‘ Employment Part/full-time, unemployed, student, etc QID
& | Gender Customer’s gender (male or female) QID
g Zip Code Location where the customer lives QID
8 User ID Customer’s identification number Secret
o | Amount Total amount paid or received QID
.S | Category Transaction’s category (e.g., groceries) QID
g Date Year, month and day that the transaction took place  QID
Z | Payee To whom the transaction was paid (e.g., Aldi) QID
® | Description  Detailed description of the transaction Secret
; User ID Customer’s identification number Secret

the adversary’s knowledge about Z. Moreover, we can express the joint IT as
the result of combining the prior p : DZ with a channel B : Z — DX. More
precisely: (1) p,B, o = II,, for all z € Z and x € X, and (ii) each row B, _
of B is found by normalising row IT. _. Now, it can be shown [2,3] that the
conditional probability p(y | z) for each y € Y and z € Z from Figure 1 is equal
to (BC),,y, where BC is just the ordinary matrix multiplication of matrices B
and C, ie., (BC).y = p(y | 2). This leads to the following definitions:

— The prior collateral Bayes vulnerability of Z is
def

DV(II) = V(p). (7)

— The dynamic and expected collateral Bayes vulnerabilities are, respectively,

DVY[I1-C] ¥ VY [pe BC| (8)

DVI[I1-C] % V{prBC] (9)

3 Formalisation of Attacks Under Open Banking

Table 1 describes the relevant information from the demographic and the trans-
action datasets used in our attacks. Tables 2a and 2b provide examples of such
datasets. Each individual has a unique, artificially created ID value, which is
attached to all of their transactions. Figure 2 provides an overview of our model
for Open Banking attacks, whose components we describe in detail below.

In our model, the secret X could be, for instance, an individual’s employ-
ment status in the demographic dataset or the maximum amount spent by a
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Table 2: Example of demographic and transaction data for five individuals.

(a) Demographic dataset. (b) Transaction dataset.
User ID Age Gender User ID Payee Description
1 46 M 1 Red Rooster Chicken Burger
2 21 M 1 Clinic Fertility Treatment
3 46 Female 2 Aldi Groceries
4 23 Female 3 Uber 23 minutes trip
5 23 Female 3 Lakeside Hotel One night
3 Clinic Skin-Cancer Treat.
4 Uber 13 minutes trip
5 Uber 25 minutes trip

Auxiliary information:
e QIDs on individuals
e QIDs on transactions
e Correlations on secrets

0

Prior knowledge: Attack: Posterior knowledge:
o Demographic dataset Adversary combines prior ﬁ> Inference of individual's
e Transaction datasets knowledge with auxiliary info secret value

--------- Information Leakage = —-—-—-----

Fig. 2: Overview of attack model.

given individual in the transaction dataset. It could even be information not ex-
plicitly present in the datasets, such as a person’s personality trait (which may
be correlated to buying habits), in the case of collateral-inference attacks.

We consider that the adversary has a particular target and has access to the
database D of interest (be it the demographic dataset, the transaction dataset, or
a combination of both). This gives them a prior 7 over transaction histories, and
their goal is to identify which transaction history belongs to their target — thus
recovering all of their target’s transactions — or infer some sensitive information
correlated to their target’s financial activities (i.e., a collateral inference).

In all of our attacks, a crucial element is the use of quasi-identifiers (QIDs),
which are attributes that, although not unique in themselves, may be combined
to (almost) uniquely identify a record in a dataset [11,22,25,20]. For instance,
Sweeney has famously shown that 87% of the population in the USA Census
of 1990 could be uniquely re-identified using only three QIDs: date of birth,
gender, and zip code [25]. In this work, we exemplify how QIDs can be used in
attacks to Open Banking systems in which we are interested.

Finally, the system C' is composed of the demographic and/or transaction
datasets, associating secret values X with observable QID values Y. For instance,
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in Example 1 (Section 4.1), the observation Y corresponds to the combination
of two QIDs: a customer’s age and gender. With access to the database D, the
adversary can compute the channel C' : X — D) mapping secrets to QIDs as

o #rows with secret x and QIDs y in database D
zy =

10
#rows with secret x in database D (10)

The channel C encodes the probability of the adversary learning a particular
information y € J under the assumption that the secret is z € X, i.e., p(y | ).
Then, once an observation y € ) is made from C — or, in other words, upon
learning some QIDs y — the adversary can update their knowledge about the
secret X via Bayesian reasoning to compute a posterior distribution, as per (4).

4 Quantification of Transaction-History Recovery Risks

In this section, we explore the first kind of privacy risk described in Section 1. We
start by analysing in Section 4.1 the scenario in which the adversary has access
to both the demographic and the transaction datasets. Then, in Section 4.2 we
assess the privacy risks that remain even when the access to demographic data
is removed. Each risk is presented with a simple and concrete example of attack,
which is then modelled using the formalism from Section 3. We then provide
experimental analyses of these attacks in real Open Banking data.

We consider as adversary any entity with access to the collected data, be it the
original institution or any 3rd party with which the data is shared. We personify
such an adversary as Charlize, a data analyst working for a fintech F, whose job
is to assess customers’ transactions to help them find suitable investment plans.
We also assume that Charlize knows that her target is a client of fintech F.

4.1 Transaction-History Recovery via Demographic QIDs

Consider the case where the fintech F collects both demographic and financial
data from customers, and let Alex be a client of F. In this scenario, Charlize has
access to the demographic dataset from Table 2a as well as to the transaction
dataset from Table 2b, and her goal is to recover Alex’s financial data in the Open
Banking system. Given that no two customers have the exact same transaction
history in Table 2b, Charlize’s objective reduces to determining Alex’s ID.

Ezample 1. Assume that Charlize learns some (perhaps seemingly innocuous)
QIDs about Alex: that she is a 46-year-old woman. Using this knowledge, Char-
lize can query the demographic dataset of Table 2a and discover that there is
only one person with such QIDs in the dataset, thus learning that Alex’s ID in
the Open Banking system must be 3. Then, Charlize can retrieve Alex’s financial
history from the transaction dataset and learn all of Alex’s transactions details,
which includes a transaction to a skin-cancer clinic!
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Instantiating the Example Using QIF. In the attack above, the secret X is Alex’s
transaction history, which, for this example, can be seen as Alex’s user ID.
Therefore, the secret X takes values in the set X = {1,2,3,4,5} of five possible
IDs. Although Charlize knows that Alex is in the dataset, before the attack she
does not have any reason to believe that any ID is more likely than any other
to be Alex’s. Hence, Charlize’s prior knowledge 7 on Alex’s ID is a uniform
distribution © = (1/5,1/5,1/5,1/5,1/5) over X. A rational strategy allows her to
guess any secret as the correct one, so the corresponding prior Bayes vulnerability
is V(w) = 1/5, meaning that her probability of correctly re-identifying Alex in
the Open Banking system assuming no auxiliary information is 20%.

But, since Charlize has access to the demographic dataset, she can employ
(10) to build the channel CReid below representing the mapping from user IDs
to QIDs in the Open Banking system. Then, she can combine her uniform prior
7 on IDs with channel C®¢4 to obtain a joint 7-CR*i4  as per (2):

7 CReid (46, M) (21, M) (46, F) (23, F)  w»CReid (46, M) (21, M) (46, F) (23, F)
1t 1 1 0 0 0 1 : 0 0 0
2 |+ 2 0 1 0 2 0 3 0 0
31> 3 0 0 1 0 |= 3 0 0 1 0
4|1 4 0 0 0 1 4 0 0 0 :
5L1 5 0 0 0 1 5 0 0 0 i

From m>CRe1d| Charlize can perform Bayesian reasoning to update her prior
knowledge about Alex’s ID to some posterior, revised knowledge [reCReid];

rereia) P) = 5 p(u2) = 5 plus) = 5 plys) =3

(46, M) (23, M) (46, F) (23, F)

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 z
5 0 0 0 :

The first row of [r>CRed] represents Charlize’s updated knowledge about the
probability of QIDs. Each column under a combination of values for QIDs rep-
resents the conditional probability of the corresponding ID being the right one,
given these QIDs values. For instance, the column under QIDs y, = (23, F) in-
dicates that, given these QIDs, there is a 50% probability that the individual in
question has ID x = 4 and a 50% probability that the individual has ID z = 5.

Now, the attack itself starts when Charlize learns some auxiliary information
about Alex: her age (46) and gender (Female). Using these two QIDs, Charl-
ize can filter the demographic dataset and find that there is a unique record
matching the criteria: that of user ID 3. Formally, Charlize’s posterior knowl-
edge (after learning the QIDs) is updated from a uniform prior on all IDs to a
posterior distribution assigning all probability to the ID x = 3, as indicated in
[r>CRe1d] above. Now, Charlize’s rational strategy is to guess that Alex’s ID is
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3, and she would be right with probability 1. Hence, the dynamic posterior Bayes
vulnerability with respect to the observation yz = (46, F) is V¥ [r>CRe1d] = 1,
as per (5), which is five times higher than the prior Bayes vulnerability.

Notice that, although Alex’s QIDs were unique enough to single her out with
certainty in the demographic dataset, this may not always be the case. As the
column under QIDs y; = (23, F) in [r>CRe1] indicates, if Charlize’s target is
a 23-year-old female, the re-identification can happen with only 50% accuracy.
Therefore, it may be relevant to assess the expected leakage over all possible
individuals that can be chosen as targets. In the above scenario, the expected
posterior Bayes vulnerability, according to (6), is V[m>C] = 1/5+1/54+1/5+1/5 =
4/5. This, in turn, means that the expected leakage is (4/5)/(1/5) = 4, indicating
that Charlize’s expected chance of correctly re-identifying Alex upon learning
her age and gender is four times higher than Charlize’s initial chance of success.

Results. To evaluate the transaction-history recovery risks when demographic
data is available, we considered a database with 17 206 customers, who to-
gether made 10 223 473 transactions. Table 3 summarises the privacy risks for
the four combinations of demographic QIDs that yielded the highest Bayes vul-
nerabilities, along with the highest outcome when zip code is unknown. Since
the demographic dataset contains 17 206 users, the prior Bayes vulnerability is
5.8-10~°. Assuming that the adversary knows their targets’ age, gender, zip code,
and employment status, the adversary’s expected probability of recovering their
target’s financial activities is 90%. In the absence of the target’s employment
status, the adversary’s expected chance of success of re-identification decreases
to 83%. Notice that lack of knowledge about the target’s zip code brings the
adversary’s posterior success rate down to only 3%.

4.2 Transaction-history Recovery via Transaction QIDs

The risks analysed in Section 4.1 consider an adversary that has access not only
to the transaction dataset, but also to the demographic dataset, which contains
revealing QIDs (such as zip code and age) that can be exploited in attacks. In this
section, we consider privacy risks that remain even when demographic data is not
available. Thus, in the examples below we still consider Charlize, an employee
of fintech F, as the adversary, but we assume that the fintech does not main-
tain demographic data anymore. Charlize’s target is now her acquaintance Bob.
Furthermore, to investigate how transaction QIDs can be composed as trans-
action histories grow, we consider Charlize acting in a longitudinal scenario in
which the transaction dataset is updated monthly with the corresponding novel
activities performed by customers. We start with a simple motivating example:

Ezample 2. Charlize learned through some social media platform that Bob has
recently eaten at Red Rooster. Using this information, she queries the transaction
dataset (Table 2b) and finds that the only compatible transaction belongs to user
ID 1. Consequently, Charlize can recover Bob’s whole transaction history, which
includes a transaction related to a fertility treatment!
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Table 3: Risks of transaction-history recovery using the demographic dataset.
Results are rounded to three decimal places. The first row corresponds to the
case of an adversary whose auxiliary information does not include the target’s zip
code. The remaining rows correspond to the four combinations of demographic
QIDs that resulted in the largest Bayes vulnerabilities, sorted in ascending order.
Recall that V(7) represents the prior Bayes vulnerability of the secret (i.e, the
adversary’s probability of guessing the secret correctly before observing the out-
put of the system) and V[reC] represents the expected posterior vulnerability
of the secret (after observing the output of the system). The prior is the same
for all cases, and the leakage of information in each case is given by the ratio
between posterior and prior vulnerabilities.

QIDs V() V(n-C]
Age, Gender, Employment 0.034
Gender, Zip Code, Employment 0.368
Age, Gender, Zip Code 58.10-° 0.835
Age, Zip Code, Employment ' 0.851
Age, Gender, Zip Code, Employment 0.905

Instantiating the Example Using QIF. Here, again, the secret X is Bob’s trans-
action history, which can be seen as the set X = {1,2,3,4,5} of possible IDs.
Before the attack is performed, Charlize has no reason to believe that any value
of X is more likely than any other, so she considers a uniform prior 7 on X.
Hence, the prior Bayes vulnerability of the secret is V(7)) = 1/5.

Charlize can build, from the transaction dataset, the channel C** mapping
transaction histories to QIDs, as per (10). Then, by combining the uniform prior
7 = (1/5,1/5,1/5,1/5,1/5) on IDs with channel C*is*  Charlize can obtain the joint
7eCHist | as per (2), and, from that, compute the posterior knowledge [m>CHist]:

(o CHI p(y1) =15 ply2) =5 plys) =3 plys) =15 plys) = 15

Red Rooster  Clinic Aldi Uber Lakeside
1 1 3 0 0 0
2 0 0 1 0 0
3 0 2 0 1 1
4 0 0 0 3 0
5 0 0 0 2 0

The attack is actually executed when Charlize uses Bob’s transaction payee
(y1 = Red Rooster) as a QID to identify that the corresponding posterior dis-
tribution in [r>CH%] (the column below y;) assigns all probability to z = 1.
Hence, the posterior dynamic Bayes vulnerability is V¥ [r-CHis%] = 1, which
means that, by using as QID the transaction’s payee, Charlize’s probability of
recovering Bob’s whole transaction history increased five-fold. The correspond-
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Table 4: Transaction dataset (second month).

User ID 1 2 3 3 4 5
Payee Uber Transfer Uber Red Rooster Uber Transfer

ing expected posterior Bayes vulnerability, as per (6), is V[r>CHst] = 1/10 +
/104 1/5+1/5+1/15 = 2/3. Consequently, the expected leakage is (%/3)/(1/5) = 10/3.

Now, suppose that Charlize gains access to a second month of transaction
data, summarised in Table 4. Charlize can construct a channel DTSt . ¥ — D)
similar to CHist | but for the second month of data. Then, due to independence
of the observations, she can compose the two channels into the following channel
CHist. H DHist. X = ]D)(y X yl)7 where (CHist. || DHist.) — Cgli;;t 3 DgI;If;jc

z,(y,y’)
ctist- || pHist- (RR, Uber) (Clinic, Uber) (Clinic, RR) (Aldi, Transfer)
1 1 : 0 0
2 0 0 0 1
3 0 z z 0
4 0 0 0 0
5 0 0 0 0

Each output (y,y") € D(Y x )’) corresponds to one observation y in the first
month and another 3 in the second. In this case, the expected posterior Bayes
vulnerability reaches 14/15, and the corresponding expected leakage is 14/3. Over-
all, the addition of only one extra month of data increased leakage by 40%.

Results. Table 5 shows the risks of transaction-history discovery for the four
worst combinations of transaction QIDs (i.e., the four combinations that resulted
in the largest Bayes vulnerabilities), in conjunction with the case when the ex-
act amount is unknown to the adversary (i.e., the adversary knows only the
transaction’s date, payee, and category). We constructed the channel from the
transaction dataset, as per (10), and considered a uniform prior on transaction
histories. For this experiment, we considered four (consecutive) months of trans-
actions. The database holds a total of 14 998 194 transactions (ranging from
3 037 108 to 5 121 799 per month) distributed into 42 073 financial histories.
Consequently, the prior Bayes vulnerability is 1/42073 = 2.37 - 1075,

Assuming that the adversary learns as QIDs the date, payee, amount, and
category of one of their target’s transactions, the expected chance of recovering
their target’s whole transaction history is 54%. Notice that the risk, although
much smaller than the 90% found in Section 4.1 when the demographic dataset
was also available, remains significant. It is worth noting that much of this risk
comes from knowing the exact value of one transaction, given that the removal
of the transaction’s amount would significantly reduce the vulnerability, down
to a 5% expected success rate. Nevertheless, as customers share more data over



Formal Privacy Analyses for Open Banking 13

Table 5: Risks of re-identification and of transaction-history recovery without
using the demographic dataset. Results are rounded to three decimal places.
The first row corresponds to the case of an adversary whose auxiliary infor-
mation does not include the transaction’s exact amount. The remaining rows
correspond to the four combinations of transaction QIDs that resulted in the
largest Bayes vulnerabilities, sorted in ascending order accordingly to the last
column, i.e., n = 4, where n is the number of months considered in the longitudi-
nal setup. Recall that V() represents the prior Bayes vulnerability of the secret
(i.e, the adversary’s probability of guessing the secret correctly before observing
the output of the system) and V[r>C || --- || Cy] represents the expected pos-
terior vulnerability of the secret (after observing the output of the system for n
months). The prior is the same for all cases, and the leakage of information in
each case is given by the ratio between posterior and prior vulnerabilities.

V(m) V[meC || --- || Cn]
QIDS n=1 n=2 n=3 n=4
Date, Payee, Category 0.063 0.292 0.609 0.836
Date, Amount 0.266 0.807 0.975 0.998
Date, Payee, Amount 2.73-107° 0.521 0911 0.992 0.999
Date, Amount, Category 0.437 0917 0.994 1.000
Date, Payee, Amount, Category 0.544 0936 0.996 1.000

time, this risk increases considerably. A second month’s worth of data raises the
adversary’s success rate to 93%. After a third month, the adversary can recover
virtually every transaction history in the dataset, with 99.6% accuracy. And,
even with no knowledge about the transaction value, a longitudinal attack over
four months of financial activities can raise the adversary’s success rate to 83%.

5 Quantification of Collateral Attribute-Inference Risks

In the previous section, we considered the risk of transaction-history recovery,
which constitutes a privacy breach for individuals and can reveal very sensitive
attributes present in the Open Banking database. In this section, we explore
the more refined collateral attribute-inference attacks, where the adversary’s
goal is not to infer individuals’ attributes that are explicitly present in the Open
Banking database, but to exploit known correlations to infer sensitive information
not explicitly present in the Open Banking database. To illustrate, consider the
following correlation II between number of transactions and neuroticism level:
T = {(Low,1) : 2/5,(Mid, 1) : 1/5,(Mid, 2) : 1/s5, (High, 3) : 1/5}. (Neuroticism is
scored from 2 to 14, but for simplicity in this example we grouped the scores.)

Ezxample 3. While examining Bob’s transactions, Charlize recalls a scientific
study that uncovers a strong correlation (the joint IT above) between buying
habits and psychological traits. She then decides to apply this study to try to
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infer Bob’s level of neuroticism. Charlize knows that Bob’s transaction history is
composed of two transactions. By linking this information with the correlation
between number of transactions and neuroticism score, she can infer that Bob
might have an intermediate level of neuroticism.

Instantiating the FExample Using QIF. We want to quantify how much infor-
mation channel C#™ : X — DY mapping customers’ transaction counts X to
transaction QIDs Y (indirectly) leaks about the individuals’ neuroticism level Z,
which takes values in Z = {Low, Mid, High}. C#T" can be constructed from an
extension of the transaction dataset, which incorporates the number of transac-
tions made by each individual. Then, we multiply C*™ by channel B obtained
from the joint IT. The result is the channel BC# 1™ below:

B 123 C#™ RR Clinic Aldi Uber Lakeside BC#T RR Clinic Aldi Uber Lakeside

Low [100] 1 [0 0 & 2 0 Low O 0 & 2 0
Mid (30 2 |5 4 0 o0 0 = Md |+ 1 1 1 0
High [001] 3 Lo 4§ 0 % 3 High LO § 0 3 3

By combining channel BC#T" with a prior distribution p = (2/5,2/5,1/5)
on neuroticism levels (also extracted from the correlation I7) and employing
Bayesian reasoning, Charlize obtains the posterior knowledge

mepC?t] PO =15 py2) =5 plys) =5 plys) =15 p(va) = 5

Red Rooster Clinic Aldi Uber Lakeside
Low 0 0 2 2 0
Mid 1 2 3 2 0
High 0 2 0 3 1

Then, knowing that Bob went to Red Rooster, Charlize updates her knowledge
to the posterior under column y;. Hence, in this scenario she can be confident
that Bob has an intermediate level of neuroticism. In the expected case, the
adversary’s chance of discovering someone’s neuroticism level is DV [I[T>C7#Tr] =
1104+ 1/10+2/154+4/15+ 1/15 = 2/3, as per (9), which is 5/3 times higher than their
prior chance of success V(p) = 2/5 (i.e., before learning any transaction QIDs).

Results. We now assess the privacy risks of collateral-inference contexts in a
real-world dataset. The experimental setup is similar to that adopted in Sec-
tion 4.1. We assess the information leaked from the Open Banking system about
someone’s psychological trait — neuroticism, scored from 2 to 14, and self-
control, scored from 1 to 7 — due to a correlation with that person’s spending
behaviour. To characterise spending behaviour, we chose three of the metrics
analysed by Tovanich et al. [26]: the total number of transactions (ni.:), the
total amount (ato), and the average amount (aqyy) spent by each customer. We
considered only the integer parts of aso; and agyg-

To construct the collateral-inference scenarios, we require a joint distribution
between the psychological traits that the adversary seeks and the spending met-
rics. Tovanich et al. [26] did not provide the joint distributions that correspond



Formal Privacy Analyses for Open Banking 15

0179
0.175

0.25

0.150 0.150
0150 0.220

0.20
0.125
0110
0100 0100 0100 015
0120
0.075
0.060 0.060 0.10
0.050
0,040
0027 0.05
0.025 0020 0.030
0.001 0.00
1 2 3

0.000
2 4 6 8 10 12 14

0280
0.190
0.130

III o
4 5 6 7

on neuroticism (b) Prior p**¥ on self-control

neuro

(a) Prior p

Fig. 3: Prior distributions on psychological traits.

to the data they used in their experiments. However, they provided some useful
Pearson correlations, together with plots of the marginal distributions on the
psychological traits scores. Using these, we determined the marginal distribu-
tions from the plots for neuroticism and self-control.

The derived prior (marginal) distributions p™¢“° and p**¥ for, respectively,

neuroticism and self-control are depicted in Figure 3. In the absence of auxiliary
knowledge, from the prior distribution p™**“™ we conclude that the adversary’s
optimal guess for a random individual’s neuroticism score is 4, the secret value
that maximises prior Bayes vulnerability: V' (p"¢*™°) = 0.179. Similarly, the a
priori optimal guess for self-control is 5, with a corresponding prior Bayes vul-
nerability of V(p*¢¥) = 0.280.

For the attack itself, we constructed synthetic datasets correlating the spend-
ing metrics and the personality trait scores. For that, we first generate scores for
each user in the transaction dataset, following the prior distributions in Figure 3.
Then, we shuffle the trait scores and the metric values. After that, we iteratively
randomly choose users (indices), sort the trait scores in ascending order if the
target Pearson correlation is non-negative or in descending order otherwise, and
sort the metric values in ascending order, until achieving a Pearson correlation
as close as possible to the target. (See Appendix B for the pseudocode that was
used in the construction of the joints and for the Pearson correlations.)®

Table 6 shows the posterior collateral Bayes vulnerability and the correspond-
ing information leakage in our experiments. Knowledge of date, payee, amount,
and category of one of their target’s transactions and access to the customers’
transaction count n., increases the adversary’s probability of guessing their tar-

5 We reinforce that the use of synthetic joints was due to the fact that we only had ac-
cess to correlations in the form of Pearson correlations; the datasets from which these
correlations were computed are not publicly available. Nevertheless, we do believe
the synthetic data is illustrative of the kind of concrete threat we are considering.
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Table 6: Information leakage about individuals’ psychological traits, given corre-
lations with their spending behaviour. Results correpond to the 95% confidence
interval of 30 randomly constructed joints.

Trait Metric V(p) DVI[II-C] Information Leakage
Mtor [0.198,0.200] [1.114,1.119)]
Neuroticism Aot 0.179  [0.600,0.601] [3.362, 3.364]
g [0.597, 0.598] [3.346, 3.348]
Totor 0.290, 0.292] [1.038, 1.041]
Self-control  awe  0.280  [0.616,0.620] [2.202, 2.214]
Gavg [0.641,0.643] [2.292,2.294]

get’s neuroticism and self-control score by a factor of, respectively, 1.114 and
1.038 (reaching a posterior success of about 19% and 29%, respectively).

In constrast, knowledge of the total or average amount spent by customers
incur on a much higher privacy risk. Access to the total amount spent by cus-
tomers (asr) boosts the adversary’s expected success by a factor of 3.362 for
neuroticism and a factor of 2.202 for self-control. Finally, if the adversary knows
the correlation between personality traits and the average amount spent by cus-
tomers, their chance of identifying their target’s trait correctly increases by a
factor of 3.346 for neuroticism and by a factor of 2.292 for self-control. In all
four scenarios, the posterior Bayes vulnerability reached around 60%.

6 Discussion and Conclusion

Our study has formalised and highlighted the risks of data sharing for con-
sumers, for both transaction-recovery and indirect attribute-inference risks (via
collateral-inference scenarios) in a real Open Banking system in Australia. Al-
though our analysis focuses on the risks associated with customers who have pro-
vided consent to use their data, we argue that the onus should be on regulators to
ensure that privacy-risk mitigation is inherent in the design of data-sharing pro-
tocols. Furthermore, we highlight the issue of accountability for privacy breaches
and with whom responsibility lies. Moves to increase consumer controls over data
amplify the chances that consumers will unwittingly expose themselves to pri-
vacy risks. It appears that consumer-controlled sharing exonerates institutions
from obligations regarding private data sharing and forces consumers to absorb
that risk. Our view is that it should be up to organisations and regulators to
provide guidelines to assist consumers in making informed decisions.

On the mechanisation of our approach. The QIF framework provides formulas
according to which the leakage of sensitive information is measured (in terms
of prior and posterior vulnerabilities) taking as input: (i) a prior distribution
representing the adversary’s prior knowledge and (ii) a channel representing the
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system’s behaviour. To compute such formulas in practice, we need to first model
the prior and the channel in each case of interest (often writing personalised code
to extract the prior and the channel from the data), and then these parameters
can be passed onto a QIF library that can compute leakage.

Analyses of other scenarios. We highlight that, although this work focused on
the implementation of Open Banking in Australia, by analysing one particular
dataset provided by a fintech company, the framework described can be used to
quantify the privacy risks of any other similar Open Banking model. However,
this requires access to other real-world datasets that reflect the specification of
the Open Banking system that one wishes to analyse. Consequently, the results
may vary according to the data.

Key Recommendations. Our research shows that the release of arbitrary text
fields in transaction data leads to unnecessary privacy risks to customers, and
privacy liabilities to small fintechs. To our knowledge, these fields are only used
to identify transaction categories, and could be redacted to disclose far less
information than they do at present. The transactions’ payee field may also carry
sensitive information, and thus should (at the very least) be treated before being
shared. We also recommend to customers that no more than one month’s worth of
data is released to prevent longitudinal attacks, which are much more damaging
with the release of additional data. However, it is unclear how much utility is
lost to the fintech in this case (i.e., how much information they would require
in order to make a reasonable financial judgement). We leave this investigation
to future work. We also believe that the release of demographic data leads to
unnecessary privacy invasions above what utility this information might provide,
and we recommend that demographic data on individual users is not collected,
or, at the least, not directly associated with the provided transaction data.

Future Work. We plan to extend our analysis to other collateral-inference scenar-
ios (e.g., health issues, political preferences) and use the theory of QIF to limit
the damage caused by such attacks over all possible correlations and gain func-
tions using collateral (Dalenius) capacity [3]. We also want to study the trade-off
between privacy and utility if different privacy mechanisms are employed.
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A More Details on Quantitative Information Flow

The leakage measures used in Quantitative Information Flow (QIF) were devel-
oped by the security community in line with the principle that leakages should
correspond with an adversarial attack, and if the leakage of a system increases,
this increase should be justifiable by demonstrating an adversary who is able to
learn more from the leakier system. However, leakages can be difficult to inter-
pret in practice, and so we give here some toy examples to explain the leakage
measures used in this paper and how to use them.

Let us say that we are given a dataset of 100 users in which one user is
identifiable with certainty (using their QIDs) and every other user is identifiable
with at most 50% probability. This could be depicted by the following channel:

C Q1Q2Q3 - Qn_1Qn
vy 1 0 0 --- O 0 7
Uo 0O 1 0 - 0 0
U3 0o 1 0 - 0 0
Uy 0O 1 0 - 0 0
Ug9 o 0 0 --- 0 1
U100 L0 0 0 --- 0 1

Now, the risk to user u; of having their data breached is not the same as the
leakage of the system. The risk to a user (with respect to an attack) is given
by the posterior vulnerability; this measure focuses on the posterior knowledge
of the adversary, i.e., that after the attack. The leakage of the system tells us
how much the system itself contributes to the attacker’s gain in knowledge with
respect to the prior state, i.e., that before the attack was performed.

Let us denote the dynamic Bayes leakage of a system C, assuming a prior 7
and given an observation y, by £Y(w, C'). In the above case, the dynamic posterior
vulnerability for the individual user (using a uniform prior v) is V@ [vrC] = 1,
meaning that their probability of being re-identified given observation @7 is 1.
The dynamic leakage of this system for user u; is £9* (v, C) = 1/(1/100) = 100.
Hence, the adversary’s knowledge has increased 100-fold.

Now consider a dataset of 10 000 users in which one is identifiable with 10%
probability. This could be depicted by the channel
D Q1Q20Q3 - Qn1@Q
up [ 0 0--- 0 07

Uu10 1 o 0 ---

0 0
Uil 0 1 0 --- 0 0
Ug9 0O 0 0 --- 0 1

u100_0 o 0 --- 0 14
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Here the first 10 users share the same QIDs ;. Therefore, the probability of
an adversary guessing user u; given the observation () (under a uniform prior
v) is V@ [usD] = /10, as expected, and the dynamic leakage of this system for
user u; and the observation Q; is L2 (v, D) = (%/10)/(1/10000) = 1000. Notice that
this is higher than what we computed for channel C', which might be interpreted
as indicating that this channel D is less safe for user u; than is channel C.
However, the leakage between two systems operating on different secret spaces
cannot be compared in this way, since the adversary has different priors on the
different spaces (thus, we are not comparing apples with apples). If we were
just considering user u;, we would just compare posterior vulnerabilities, which
implies that channel D is safer than channel C (for that user).

In terms of when to rely on leakages, let us consider now the channel Co
below, which has the same secret space as C. However, this time no user is
vulnerable to attack with certainty.

Cy Q1Q2Q3 - Qno1@n

g 1 0 O - 0 07
U 1 0 0 - 0 0
U3 0 1 0 - 0 0
Uy 0 1 0 - 0 0
Ug99 0O 0 0 --- 0 1
U100 LO O O --- 0 14

Now we can compute the dynamic leakage of this system for user u; and ob-
servation (); and compare it with the corresponding dynamic leakage of C. For
Cs, we have L@ (v, Cs) = (Y/2)/(1/100) = 50, meaning that the adversary’s knowl-
edge has increased 50-fold on Cy, compared with their 100-fold increase on C,
indicating that Cy is safer than C' for user u.

Alternatively, we can compare the multiplicative leakages for the more gen-
eral cases (expected and maximum gain of the adversary, where the max-case
takes into account the “best” observation — in the adversary’s perspective —
irregardless of its probability):

L(v,C) = n L(v,C3) = n
LM (y,C) = 100 LM (v,C2) = 50

This shows that channel C is not better than Cy for any leakage measure, and
is worse for the worst-case measures that we use.

B Construction of Joints from Pearson Correlations

As explained in Section 2, a collateral attribute-inference attack requires a joint
II representing a known correlation between secrets Z and X. However, as men-
tioned in Section 5, we only had access to correlations in the form of Pearson
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Table 7: Comparison between the Pearson correlations given in [26] and the
correlations we obtained for the synthetically built datasets, when demographic
information is available. Numbers correspond to the 95% confidence interval of
1 000 randomly constructed joints. The interval’s lower and upper limits are
rounded down and up to four decimal places.

Trait Metric Pearson [26] Pearson achieved
Ntor —0.0735 [—0.0735, —0.0734]

Neuroticism Gtot —0.1644 [—0.1308, —0.1307]"
Gavg 0.1496 [-0.1496, —0.1495]
Niot —0.0717 [—0.0717,—0.0716]
Self-control Gtot +0.0976 [+0.0975, +-0.0976]
Gang +0.1524 [+0.1523, +0.1524]

* Target correlation is not reachable with the data available.

correlations; the datasets from which these correlations were computed are not
publicly available. In view of this, we opted to construct synthetic joints from
the Pearson correlations, using the transaction dataset we have available and the
Pearson correlations and marginal distributions on the personality traits given
in [26]. Algorithm 1 shows the pseudocode for the construction of such joints.

Table 7 shows the Pearson correlations from [26] between neuroticism/self-
control and each of the chosen spending metrics, side by side with the Pearson
correlations achieved in the synthetic joints that we constructed.
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Algorithm 1 Pseudocode for generating synthetic joints, given two lists, Z
and X, and a Pearson correlation between Z and X. The input Z here would
be, e.g., a list of neuroticism scores, distributed according to a marginal dis-
tribution on neuroticism. And, X would be a list of people’s total number of
transactions, computed from the transaction dataset. Assume that pearson is an
existing function that computes the Pearson correlation between two lists.

1: function GENERATE JOINT(Z, X, target pcorr, €)

First, update target if original target is unreachable
3 if target pcorr > 0 then

4 upper _limit < pearson upper limit(Z, X)

5 target pcorr <— min(target pcorr, upper_limit)
6: else
7.

8

9

lower limit < pearson_lower limit(Z, X)

target pcorr < max(target pcorr, lower limit)
end if

10: Then, shuffle data to get an initial joint

11: Z <« shuffle Z

12: X < shuffle X

13: curr_pcorr ¢ pearson(Z, X)

14: n <« |Z|*10/100

15: Finally, iteratively sort data at random

16: while | curr__pcorr - target _pcorr | > € do

17: indices < choose n indices at random

18: if target pcorr > 0 then

19: Z' + Z, with Z|indices| sorted in ascending order
20: else

21: Z' «+ Z, with Z|indices| sorted in descending order
22: end if

23: X' + X, with X[indices| sorted in ascending order
24: new_pcorr < pearson(Z’, X')

25: Due to sorting, pcorr always goes in one direction
26: if | new _pcorr | < | target pcorr | 4+ € then

27: Z <+ 7

28: X+ X'

29: CUIT _PpCOIT <— NeW _pCorr

30: else

31: n < int(n/2)

32: end if

33: end while
34: return (7, X)
35: end function
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